\qquad
\qquad

Math 123 Abstract Mathematics I - Midterm Exam I - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. A correct answer without proper reasoning may not get any credit. For this exam take $\mathbb{N}=\{1,2, \ldots\}$.

Q-1) For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ we have the following property:

$$
\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall \epsilon>0, \exists \delta>0,|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon
$$

Write the negation of the above property.
Solution: The negation of the above property is

$$
\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, \exists \epsilon>0, \forall \delta>0,|x-y|<\delta \wedge|f(x)-f(y)| \geq \epsilon .
$$

Q-2) Let p, q, r be some logical statements. Show, using a truth table, that $p \Rightarrow q$ is the same thing as $(\sim p) \vee q$. Show also, using whatever you like, that $(p \Rightarrow q) \Rightarrow r$ is not the same thing as $p \Rightarrow(q \Rightarrow r)$.

Solution:

p	$\sim p$	q	$p \Rightarrow q$	$(\sim p) \vee q$
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$(p \Rightarrow q) \Rightarrow r$	$p \Rightarrow(q \Rightarrow r)$
1	1	1	1	1	1	1
1	1	0	1	0	0	0
1	0	1	0	1	1	1
1	0	0	0	1	1	1
0	1	1	1	1	1	1
0	1	0	1	0	$\mathbf{0}$	$\mathbf{1}$
0	0	1	1	1	1	1
0	0	0	1	1	$\mathbf{0}$	$\mathbf{1}$

Q-3) Prove that for all positive integers n, we have

$$
1^{4}+2^{4}+\cdots+n^{4}=\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+\frac{1}{3} n^{3}-\frac{1}{30} n .
$$

Solution: When $n=1$, both sides are 1 .
Assume the statement for n. Now add $(n+1)^{4}$ to both sides of the statement and check that, after simplification, $\frac{1}{5}(n+1)^{5}+\frac{1}{2}(n+1)^{4}+\frac{1}{3}(n+1)^{3}-\frac{1}{30}(n+1)=\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+$ $\frac{1}{3} n^{3}-\frac{1}{30} n+(n+1)^{4}$. This proves the statement for all $n \in \mathbb{N}$.

Q-4) Let S be the set of all finite subsets of \mathbb{N}. Show that S is countable.
Solution: Let S_{n} be the set of all subsets of \mathbb{N} containing exactly n elements. Then $S=\bigcup_{n=1}^{\infty} S_{n}$. If each S_{n} is countable, then S being a countable union of countable sets will be countable. So it remains to show that each S_{n} is countable.

Clearly S_{1} is countable being in one-to-one correspondence with \mathbb{N}. Assume S_{n} is countable. We observe that there is an injection $S_{n+1} \rightarrow \mathbb{N} \times S_{n}$ given by $A \in S_{n+1} \mapsto a \times A \backslash\{a\}$ where a is the smallest integer in A. Since we assumed S_{n} to be countable, the product $\mathbb{N} \times S_{n}$ is countable. Every subset of a countable set is countable (or finite). So S_{n+1} is countable. This completes the proof that each S_{n} is countable. And that in turn completes the proof that S is countable.

Q-5) Let $A=\mathbb{N} \times \mathbb{N} \times \cdots$ (infinite product), and let B be the set of all infinite sequences of 0 and 1, i.e. a typical element $b \in B$ looks like $b_{1} b_{2} b_{3} \ldots$ where each b_{n} is either 0 or $1, n=1,2, \ldots$.
(a) Prove or disprove: A is countable.
(b) Which of the following statements is true? Prove your answer.
(i): $\quad \operatorname{card}(A)<\operatorname{card}(B)$, (ii): $\quad \operatorname{card}(A)=\operatorname{card}(B)$, (iii): $\quad \operatorname{card}(A)>\operatorname{card}(B)$,
(iv): None, because the cardinalities of A and B cannot be compared.

Solution:

(a) We prove that A is uncountable. This follows from the well-known Cantor diagonal argument as follows. Suppose that A is countable. Then we can number and list all elements of A. A typical element in the list would look like $\mathbf{a}_{\mathbf{k}}=\left(a_{k 1}, a_{k 2}, a_{k 3}, \cdots\right)$ where $\mathbf{a}_{\mathbf{k}} \in A$ and $a_{k j} \in \mathbb{N}, k, j=1,2, \ldots$ Now consider the element $\mathbf{c}=\left(c_{1}, c_{2}, c_{3}, \cdots\right) \in A$ constructed as follows:

$$
c_{k}=\left\{\begin{array}{lll}
1 & \text { if } & a_{k k} \neq 1, \\
2 & \text { if } & a_{k k}=1
\end{array}\right.
$$

Then clearly \mathbf{c} is not in the above list since it differs from each $\mathbf{a}_{\mathbf{k}}$ in the k-th entry. This contradicts the assumption that A can be counted.
(b) We show that $\operatorname{card}(A)=\operatorname{card}(B)$.

If $\mathbf{b}=b_{1} b_{2} b_{3} \cdots \in B$, then we can send it injectively to A as $\left(b_{1}+1, b_{2}+1, b_{3}+1, \cdots\right)$.
Finding an injection from A to B is a little more tricky: We explain it on an example. Let $\mathbf{a}_{\mathbf{k}}=\left(a_{k 1}, a_{k 2}, a_{k 3}, \cdots\right)=(2,10,5,4,1, \cdots) \in A$. We expand each $a_{k j}$ in a in binary form and write it downwards in reverse order under $a_{k j}$ and fill the remaining columns downward with zeros.

2	10	5	4	1	\cdots
0	0	1	0	1	\cdots
1	1	0	0	0	\cdots
0	0	1	1	0	\cdots
0	1	0	0	0	\cdots
0	0	0	0	0	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	

Then we construct a binary sequence from this table by listing the elements in the diagonals, always starting from the left hand side of the table and going upward:
010011000001101 ... Here we left the blanks only to describe the method. In actuality no blanks are needed. This clearly gives an injection of A into B. We now invoke the Schroeder-Bernstein theorem and conclude that $\operatorname{card}(A)=\operatorname{card}(B)$.

