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(4) You must obey the usual rues of attribution: all sources you use must be explicitly cited in such a
manner that the source is easily retrieved with your citation. This includes any ideas you borrowed
from your friends.

(5) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if
any, making sure that you exhibit your total understanding of the ideas involved.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in
preparing this submitted work.

Please sign here:



NAME: STUDENT NO:

Q-1) Define a function F (m,n) =
1

2πi

∫
|z|=2

zn(1− z)m dz, where m,n ∈ Z. Find explicitly the value

of F (m,n).

Note that for notational convenience I have redefined F (m,n) by a factor of 2πi.

Solution:

We will use Cauchy Integral Formula which says that

f (k)(z0) =
k!

2πi

∫
C

f(z)

(z − z0)k+1
dz,

where f is analytic on and inside the closed contourC, z0 is a point inside ofC and k is a non-negative
integer.

Case (1) m,n ≥ 0.
In this case the function zn(1 − z)m is analytic inside |z| = 2, and by the Cauchy-Goursat Theorem
the integral is zero.

F (m,n) = 0, if m,n ≥ 0.

Case (2) m ≥ 0 > n.
Let fm(z) = (1− z)m. Then f is analytic and

F (m,n) =
1

2πi

∫
|z|=2

fm(z)

(z − 0)(k−1)+1
,

where k = −n > 0. By CIF we get

F (m,n) =
f
(k−1)
m (0)

(k − 1)!
.

Now we have two subcases.

Case (2.1) 0 ≤ k − 1 ≤ m.
In this case we have

f (k−1)
m (0) = (−1)k−1 m!

(m− k + 1)!
, and

f
(k−1)
m (0)

(k − 1)!
= (−1)k−1 m!

(k − 1)!(m− k + 1)!
.

Thus in this case we have

F (m,n) = (−1)−n−1
(

m

m+ n+ 1

)
, if m ≥ 0 > n and m+ n ≥ −1.

Case (2.2) 0 ≤ m < k − 1.
In this case we have f (k−1)

m (z) = 0, hence

F (m,n) = 0, if m ≥ 0 > n and m+ n < −1.



If we adopt the convention that
(
a
b

)
= 0 when b is not in the range 0 to a, then we can summarize the

result of Case 2 as follows.

F (m,n) = (−1)n+1

(
m

m+ n+ 1

)
, if m ≥ 0 > n.

Case (3) n ≥ 0 > m.

In this case we are evaluating the integral
(−1)m

2πi

∫
|z|=2

zn

(z − 1)(−m−1)+1
dz. Arguing as in the previ-

ous case we find that in this case we have

F (m,n) = (−1)m
(

n

m+ n+ 1

)
, if n ≥ 0 > m.

Case (4) m,n < 0.
In this case let −m = k > 0 and −n = `. Then we have

F (m,n) =
1

2πi

∫
|z|=1/2

1
(1−z)k

(z − 0)(`−1)+1
dz +

(−1)k

2πi

∫
|z−1|=1/2

1
z`

(z − 1)(k−1)+1
dz.

Using CIF we see that the first integral is given by

d`−1

dz`−1 z=0

(
1

(1− z)k

)
=

(
k + `− 2

k − 1

)
,

and the second integral is equal to

(−1)k dk−1

dzk−1 z=1

(
1

z`

)
= −

(
k + `− 2

k − 1

)
.

Thus we see that in this final case we have

F (m,n) = 0, if m,n < 0.
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Q-2) Let f be an entire function. Fix two arbitrary points z1 6= z2 in C. Show that the integral of
f along any contour from z1 to z2 is the same regardless of which contour used. Thus define a

function G(z) =

∫ z

0

f(z) dz. Show that G′(z) = f(z). Let F be any antiderivative of f . Show

that
∫ z2

z1

f(z) dz = F (z2)− F (z1).

Solution:

If C1 and C2 are two contours from z1 to z2, then C1−C2 is a closed contour and by Cauchy-Goursat
Theorem, the integral of f along this loop is zero.

0 =

∫
C1−C2

f(z) dz =

∫
C1

f(z) dz −
∫
C2

f(z) dz.

This then shows that ∫
C1

f(z) dz =

∫
C2

f(z) dz.

To show that G′(z) = f(z) we use the continuity of f at z. For any ε > 0 let δ > 0 be such that
|f(τ)− f(z)| < ε whenever |τ − z| < δ. Take any complex number h with 0 < |h| < δ, and evaluate
the following integrals along a line joining z to z + h. Then we have∣∣∣∣G(z + h)−G(z)

h
− f(z)

∣∣∣∣ =

∣∣∣∣1h
∫ z+h

z

f(τ) dτ − 1

h

∫ z+h

z

f(z) dτ

∣∣∣∣
≤ 1

|h|

∫ z+h

z

|f(τ)− f(z)| |dτ |

< ε,

which proves that G′(z) = f(z).

Using the definition of G we have∫ z2

z1

f(z) dz =

∫ z2

0

f(z) dz −
∫ z1

0

f(z) dz = G(z2)−G(z1).

If F is any other antiderivative of f , then G = F + C for some constant C, and we have

G(z2)−G(z1) = F (z2)− F (z1),

as claimed.
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Q-3) Evaluate the integral
∫
|z|=1

zn dz in two ways: (a) Use Cauchy theorems, (b) Use the definition of

path integral.

Solution:

Using Cauchy Theorem, the integral is zero when n ≥ 0, since in that case zn is analytic around zero.
If n < 0, then let −n = k > 0 and set f(z) = 1. The integral then becomes∫

|z|=1

f(z)

z(k−1)+1
dz.

If k = 1, then by Cauchy Theorem, the integral is equal to 2πi f(0) = 2πi. If k > 1 then the integral
involves the derivatives of f = 1, so the integral is zero. Hence we have by Cauchy Theorem∫

|z|=1

zn dz =

{
2πi if n = −1,
0 otherwise.

Using the definition of path integral requires that we start with a smooth parametrization of the contour
|z| = 1. Let z = eit, t ∈ [0, 2π] be such a parametrization. Then dz = ieitdt, and we get∫

|z|=1

zn dz =

∫ 2π

0

iei(n+1)t dt.

If n = −1, then the integrand becomes the constant i, and hence the integral is 2πi. If n 6= −1, then
using the result of the previous problem, The Fundamental Theorem of Calculus, we get∫

|z|=1

zn dz =

∫ 2π

0

iei(n+1)t dt =

(
ei(n+1)t

n+ 1

∣∣∣∣2π
0

)
= 0.
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Q-4) Let f be an entire function whose n-the derivative is bounded in the plane. Show that f is a
polynomial of degree n.

Solution:

Fix any point z0 in the plane. We will show that f (n+1)(z0) = 0. This suffices to show that f is a
polynomial of degree n. Let R > 0 be any real number, and let M > 0 be an upper bound for the
n-th derivative of f in the plane. By Cauchy Integral Formula we have

f (n+1)(z0) =
1

2πi

∫
|z|=R

f (n)(z)

(z − z0)2
dz.

Taking absolute value of both sides, we get∣∣f (n+1)(z0)
∣∣ ≤ M

R
.

Since this holds for any R > 0, by sending R to infinity we see that f (n+1)(z0) = 0.
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Q-5) Let a, b, c be distinct complex numbers and let C be a simple closed contour containing all of them
in its interior. Show that

1

2πi

∫
C

z2

(z − a)(z − b)(z − c)
dz = 1.

Solution: Let us define a function, for any u, v ∈ C, as

fuv(z) =
z2

(z − u)(z − v)
, z ∈ C.

Let r > 0 be small such that the closed discs with radii r and centers at a, b and c totally lie inside C.
Then we have

1

2πi

∫
C

z2

(z − a)(z − b)(z − c)
dz =

1

2πi

∫
|z−a|=r

fbc(z)

(z − a)
dz+

1

2πi

∫
|z−b|=r

fca(z)

(z − b)
dz+

1

2πi

∫
|z−c|=r

fab(z)

(z − c)
dz.

By Cauchy Integral Formula this sum is equal to

fbc(a) + fca(b) + fab(c).

Now a straightforward calculation shows that this sum is 1.


