Math 206 Complex Calculus - Final Exam Solutions

1 Solve the following differential equation using Laplace transform techniques:

$$
f^{\prime \prime}(t)-3 f^{\prime}(t)+2 f(t)=e^{3 t}
$$

where $f(0)=0, f^{\prime}(0)=1$.
Solution: We apply Laplace transform to both sides of the differential equation using the formulas

$$
\begin{aligned}
\mathcal{L}(f(t)) & =F(s), \\
\mathcal{L}\left(f^{\prime}(t)\right) & =s F(s)-f(0) \\
& =s F(s), \\
\mathcal{L}\left(f^{\prime \prime}(t)\right) & =s^{2} F(s)-s f(0)-f^{\prime}(0) \\
& =s^{2} F(s)-1, \\
\mathcal{L}\left(e^{3 t}\right) & =\frac{1}{s-3} .
\end{aligned}
$$

The equation then becomes

$$
\left(s^{2}-3 s+2\right) F(s)-1=\frac{1}{s-3} .
$$

Note that $s^{2}-3 s+2=(s-1)(s-2)$. Solving for $F(s)$ we find that

$$
\begin{aligned}
F(s) & =\frac{1}{(s-1)(s-2)}\left(\frac{1}{s-3}-1\right) \\
& =\frac{1}{(s-1)(s-2)}\left(\frac{s-2}{s-3}\right) \\
& =\frac{1}{(s-1)(s-3)} \\
& =-\frac{1}{2} \frac{1}{(s-1)}+\frac{1}{2} \frac{1}{(s-3)} .
\end{aligned}
$$

We easily take Laplace inverse transform of both sides of this equation and get

$$
f(t)=-\frac{1}{2} e^{t}+\frac{1}{2} e^{3 t}
$$

2 Calculate all values of $(-4)^{-3 / 2}$, and indicate the principal value.

Solution:

$$
\begin{aligned}
(-4)^{-3 / 2} & =\exp \left(-\frac{3}{2} \log (-4)\right) \\
& =\exp \left(-\frac{3}{2}[\ln 4+i(2 n+1) \pi]\right) \\
& =\exp \left(\ln \frac{1}{8}-i \frac{3}{2}(2 n+1) \pi\right) \\
& =\frac{1}{8}\left(\cos \frac{3}{2}(2 n+1) \pi-i \sin \frac{3}{2}(2 n+1) \pi\right), \quad n \in \mathbb{Z}
\end{aligned}
$$

The principal value is obtained when $n=0$:

$$
\begin{aligned}
(-4)^{-3 / 2} & =\frac{1}{8}\left(\cos \frac{3}{2} \pi-i \sin \frac{3}{2} \pi\right) \\
& =\frac{i}{8}
\end{aligned}
$$

3) Evaluate the integral $\int_{0}^{\infty} \frac{x^{1 / 5}}{1+x^{5}} d x$.

Solution:
We integrate the function $f(z)=\frac{z^{1 / 5}}{1+z^{5}}=\frac{\exp \left(\frac{1}{5} \log z\right)}{1+z^{5}}$ around the closed contour $P_{\rho, R}=C_{R}-$ $L_{\rho, R}-C_{\rho}+[\rho, R]$ where $R>1,0<\rho, 1$ and

$$
\begin{aligned}
C_{R} & =\left\{R e^{i \theta} \mid 0 \leq \theta \leq 2 \pi / 5\right\} \\
L_{\rho, R} & =\left\{x e^{2 \pi / 5} \mid \rho \leq x \leq R\right\} \\
C_{\rho} & =\left\{\rho e^{i \theta} \mid 0 \leq \theta \leq 2 \pi / 5\right\} \\
{[\rho, R] } & =\{x \mid \rho \leq x \leq R\}
\end{aligned}
$$

Inside this contour there is only one pole of $f(z)$, which is $z=e^{i \pi / 5}$. By the residue theorem we have

$$
\begin{aligned}
\int_{P_{\rho, R}} f(z) d z & =2 \pi i \underset{z=e^{i \pi / 5}}{\operatorname{Res}} f(z) \\
& =2 \pi i\left(\frac{z^{1 / 5}}{5 z^{4}}\right)_{z=e^{i \pi / 5}} \\
& =\frac{2}{5} \pi i\left(\left.z^{-19 / 5}\right|_{z=e^{i \pi / 5}}\right) \\
& =\frac{2}{5} \pi i\left(e^{-\frac{19}{25} \pi i}\right) \\
& =-\frac{2}{5} \pi i e^{-\frac{6}{25} \pi i} \\
& =-\frac{2}{5} \pi i\left(\cos \frac{6}{25} \pi+i \sin \frac{6}{25} \pi\right) \\
& =\frac{2}{5} \sin \frac{6}{25} \pi-i \frac{2 \pi}{5} \cos \frac{6}{25} \pi
\end{aligned}
$$

On C_{R} we have:

$$
\left|\int_{C_{R}} f(z) d z\right| \leq \frac{R^{1 / 5}}{R^{5}-1} \frac{2 \pi R}{5} \rightarrow 0 \text { as } R \rightarrow \infty
$$

On C_{ρ} we have:

$$
\left|\int_{C_{\rho}} f(z) d z\right| \leq \frac{\rho^{1 / 5}}{1-\rho^{5}} \frac{2 \pi \rho}{5} \rightarrow 0 \text { as } \rho \rightarrow 0
$$

Moreover on $L_{\rho, R}$ we have $z=x e^{2 \pi i / 5}, f(z) d z=f(x) e^{12 \pi i / 25} d x$ and hence

$$
\int_{L_{\rho, R}} f(z) d z=e^{12 \pi i / 25} \int_{\rho}^{R} f(x) d x \rightarrow e^{12 \pi i / 5} \int_{0}^{\infty} \frac{x^{1 / 5}}{1+x^{5}} d x \text { as } R \rightarrow \infty, \rho \rightarrow 0
$$

and

$$
\int_{P_{\rho, R}} f(z) d z \rightarrow\left(1-e^{12 \pi i / 25}\right) \int_{0}^{\infty} \frac{x^{1 / 5}}{1+x^{5}} d x \text { as } R \rightarrow \infty, \rho \rightarrow 0
$$

Combining this with the residue calculation above, we find

$$
\left[\left(1-\cos \frac{12 \pi i}{25}\right)-i \sin \frac{12 \pi i}{25}\right] \int_{0}^{\infty} \frac{x^{1 / 5}}{1+x^{5}} d x=\frac{2}{5} \sin \frac{6}{25} \pi-i \frac{2 \pi}{5} \cos \frac{6}{25} \pi
$$

which gives

$$
\int_{0}^{\infty} \frac{x^{1 / 5}}{1+x^{5}} d x=\frac{2 \pi}{5} \frac{\cos \frac{6 \pi}{25}}{\sin \frac{12 \pi}{25}}=\frac{\pi}{5} \frac{1}{\sin \frac{6 \pi}{25}}=0.91786 \ldots
$$

4) Consider the linear fractional transformation $f(z)=\frac{z-1}{z+1}$, and describe the images of the following sets under f.
i) The upper half plane.
ii) The unit circle.
iii) The x-axis.
iv) The y-axis.

Solution:

First write $f(z)$ in terms of x and y :

$$
f(z)=\frac{z-1}{z+1}=\frac{x-1+i y}{x+1+i y}=\frac{x^{2}+y^{2}-1}{(x+1)^{2}+y^{2}}+i \frac{2 y}{(x+1)^{2}+y^{2}}=u+i v
$$

i) When $y \geq 0$, we have $v \geq 0$. Hence the upper half plane maps onto the upper half plane. Here we used the fact that a nonconstant linear fractional transformation is onto.
ii) When $x^{2}+y^{2}=1$, we have $u=0$. Hence the unit circle maps onto the v-axis.
iii) Note that $f(-1)=\infty, f(0)=1$ and $f(1)=0$. The x-axis, which is a circle, must map onto the circle which passes through the points $\infty,-1$ and 1 . Hence the image is the u-axis.
iv) Note again that $f(0)=-1, f(i)=i$ and $f(\infty)=1$. The y-axis, which is a circle, must map onto the circle which passes through the points $-1, i$ and 1 . Hence the image is the unit circle.

