Date: 22 March 2003, Saturday Instructor: Ali Sinan Sertöz

Time: 10:00-12:00

Math 206 Complex Calculus – Midterm Exam I Solutions

1 Calculate the principal value of $|(1+i)^{2+4i}| - \frac{2}{c^{\pi}}$.

Solution:

$$(1+i)^{2+4i} = \left[\sqrt{2}e^{i(\pi/4+2n\pi)}\right]^{2+4i}$$

$$= \exp\left((2+4i)(\ln\sqrt{2}+i(\frac{\pi}{4}+2n\pi))\right)$$

$$= \exp\left(\left[2\ln\sqrt{2}-\pi-8n\pi\right]+i[4\ln\sqrt{2}+\frac{\pi}{2}+4n\pi\right]\right)$$

$$= \frac{2}{e^{\pi(8n+1)}}e^{i(4\ln\sqrt{2}+\pi/2+4n\pi)}, \quad n \in \mathbb{Z}.$$

The principal value corresponds to n=0, and the principal value of the absolute value of the above number is now seen to be $\frac{2}{e^{\pi}}$. Hence

$$|(1+i)^{2+4i}| - \frac{2}{e^{\pi}} = 0.$$

2 Find all values of z for which we have $\cosh z = \frac{\sqrt{3}}{2}$. Use any method you like.

Solution: Method-1: $\cosh z = \cosh x \cos y + i \sinh x \sin y = \frac{\sqrt{3}}{2} + i0$.

So $\sinh x \sin y = 0$. If $\sin y = 0$, then $\cos y = \pm 1$ and from $\cosh x \cos y = \frac{\sqrt{3}}{2}$, it follows that $\cosh x = \pm \frac{\sqrt{3}}{2}$, which is a contradiction since $\cosh x \geq 1$ for all $x \in \mathbb{R}$.

So we must have $\sinh x = 0$, which gives x = 0. Then $\cosh x = 1$ and we end up with $\cos y = \frac{\sqrt{3}}{2}$. From here it follows that $y = \pm \frac{\pi}{6} + 2n\pi$, where n is an integer.

Hence $z = \pm i(\frac{\pi}{6} + 2n\pi)$, where $n \in \mathbb{Z}$.

Method-2: Use $\cosh^{-1} z = \log[z + (z^2 - 1)^{1/2}]$ where you put $z = \frac{\sqrt{3}}{2}$. You get $\cosh^{-1} \frac{\sqrt{3}}{2} =$ $\log\left[\frac{\sqrt{3}}{2} \pm \frac{i}{2}\right] = \log\left[\exp\left(i\left(\pm\frac{\pi}{6} + 2n\pi\right)\right)\right] = i\left(\pm\frac{\pi}{6} + 2n\pi\right)$, which agrees with the previous answer when you note that n is any integer.

3) Evaluate the integral
$$\int_{|z|=\frac{3}{2}} \frac{\cos \pi z}{z(z-1)^2(z-2)} dz.$$

Solution:

Let
$$f(z) = \frac{\cos \pi z}{(z-1)^2(z-2)}$$
 and $g(z) = \frac{\cos \pi z}{z(z-2)}$.
Let C_1 be the positively oriented boundary of the region

 $R_1 = \{z \in \mathbb{C} | \text{ Re } z \geq 1/2, \text{ and } |z| \leq 3/2 \}$, and let C_2 be the positively oriented boundary of the region

 $R_2 = \{z \in \mathbb{C} | \text{ Re } z \leq 1/2, \text{ and } |z| \leq 3/2 \}.$ Then

$$\int_{|z|=\frac{3}{2}} \frac{\cos \pi z}{z(z-1)^2(z-2)} dz = \int_{C_2} \frac{f(z)}{z} dz + \int_{C_1} \frac{g(z)}{(z-1)^2} dz$$

$$= 2\pi i f(0) + 2\pi i g'(1)$$

$$= 2\pi i (-\frac{1}{2}) + 2\pi i (0)$$

$$= -\pi i.$$

4) For any real constant $a \in \mathbb{R}$, calculate the integral $I_a = \int_a^{\pi} \cosh(a\cos\theta)\cos(a\sin\theta)d\theta$.

Solution:

From the Cauchy Integral Formula we find that $\int_{|z|=1} \frac{\cosh az}{z} dz = 2\pi i$. Now we evaluate this integral using the definition of complex integrals.

 $z = e^{i\theta} = \cos\theta + i\sin\theta, \ -\pi \le \theta \le \pi.$

 $dz = ie^{i\theta}d\theta$. Now let

 $f(\theta) = \cosh(a\cos\theta)\cos(a\sin\theta)$, and $g(\theta) = \sinh(a\cos\theta)\sin(a\sin\theta)$. Note that f is even and g is odd, i.e. f(-z) = f(z) and g(-z) = -g(z). By direct calculation we find that

$$\frac{\cosh az}{z}dz = [\cosh(a\cos\theta + ia\sin\theta)]id\theta
= [\cosh(a\cos\theta)\cosh(ia\sin\theta) + \sinh(a\cos\theta)\sinh(ia\sin\theta)]id\theta
= [\cosh(a\cos\theta)\cos(a\sin\theta) + i\sinh(a\cos\theta)\sin(a\sin\theta)]id\theta
= [f(\theta) + ig(\theta)]id\theta
= -g(\theta)d\theta + if(\theta)d\theta$$

where we used the formulas $\cosh(iy) = \cos y$ and $\sinh(iy) = i \sin y$.

It now follows that

$$2\pi i = -\int_{-\pi}^{\pi} g(\theta)d\theta + i\int_{-\pi}^{\pi} f(\theta)d\theta = i\int_{-\pi}^{\pi} f(\theta)d\theta = 2i\int_{0}^{\pi} f(\theta)d\theta = 2iI_{a}.$$

Hence the answer is

$$I_a = \pi$$
.