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MATH 206
HOMEWORK 4 SOLUTIONS

Page 71 Exercise 2: Show that eiz = cos z + i sin z for every complex number z.
Solution: We can do this easily using equation (1) on page 69

cos z + i sin z =
eiz + e−iz

2
+ i

eiz − e−iz

2i
= eiz.

We can also use equations (11) and (12) on page 70 to write the real and imaginary parts
of cos z + i sin z and after simplifying it obtain the real and imaginary parts of eiz where we
use equation (3) on page 66:

cos z + i sin z = cos x cosh y − i sin x sinh y + i(sin x cosh y + i cos x sinh y)

= (cos x + i sin x)(cosh y − sinh y)

= eixe−y

= eiz.

Page 72 Exercise 11: Show that neither sin z nor cos z is an analytic function of z
anywhere.
Solution: When z = x + iy, sin z = sin x cosh y + i cos x sinh y. Putting z = x − iy for z
we obtain sin z = sin x cosh y − i cos x sinh y = u + iv. We check that the Cauchy-Riemann
equations ux = vy and uy = −vx hold only when z = (2n + 1/2)π, for n ∈ Z. These are
isolated points. A function is called analytic when Cauchy-Riemann equations hold in an
open set. See section 20 on page 55. So sin z is not analytic anywhere.

Similarly cos z = cos x cosh y + i sin x sinh y = u + iv, and the Cauchy-Riemann equations
hold when z = nπ for n ∈ Z. Thus cos z is not analytic anywhere, for the same reason as
above.

Page 80 Exercise 13: Show that
(a) the function Log(z − i) is analytic everywhere except on the half line y = 1, x ≤ 0.

(b) the function
Log(z + 4)

z2 + i
is analytic everywhere except at the points ±(1− i)/

√
2 and on

the portion x ≤ −4 of the real axis.
Solution: (a) Log w is analytic for every value of w = u+ iv except on the half line v = 0,
u ≤ 0. Putting z − i = x + i(y − 1) = u + iv, we see that Log(z − i) is analytic everywhere
except on the half line y − 1 = 0, x ≤ 0.

(b) As in part (a), Log(z + 4) is analytic everywhere except on the half line y = 0, x ≤ −4.
We should also exclude the points where the denominator vanishes. For this we solve for



z2 = −i = exp(i(−π/2 + 2nπ)). This gives z = ±(1− i)/
√

2. See section 7, on page 19, for
finding such roots.

Page 85 Exercise 11: Solve the equation sin z = 2 for z
(a) by equating real and imaginary parts in that equation.
(b) using expression for sin−1 z.
Solution: (a) Set sin z = sin x cosh y + i cos x sinh y = 2. This gives
sin x cosh y = 2,
cos x sinh y = 0.
The second equation holds when x = (n + 1/2)π or when y = 0. But when y = 0, the first
equation becomes sin x = 2, which has no solution. So we must have x = (n + 1/2)π. In
that case the first equation becomes (−1)n cosh y = 2. But cosh y is always positive, so n
must be an even integer. We then solve solve for cosh y = ey+e−y

2
= 2. Putting w = ey in

this equation and solving for the resulting quadratic equation, we get w = 2 ± √3. Then
y = ± ln(2+

√
3). Here we use the observation that 2−√3 = 1/(2+

√
3). Hence the solution

set is z = (2n + 1/2)π ± i ln(2 +
√

3).

(b) Putting z = 2 into the formula sin−1 z = −i log[iz + (1− z2)1/2] we get

sin−1 2 = −i log(2i± i
√

3)

= −i log(i(2±
√

3))

= −i log[(2±
√

3)ei(π/2+2nπ)]

= −i[ln(2±
√

3) + i(π/2 + 2nπ)]

= (π/2 + 2nπ)± i ln(2 +
√

3).

Page 85 Exercise 12: Solve the equation cos z =
√

2.
Solution: The formula for inverse cosine is cos−1 z = −i log[z + i(1 − z2)1/2]. Putting
z =

√
2, we get

cos−1
√

2 = −i log[
√

2± 1]

= ±i log[
√

2 + 1]

= ±i log[(
√

2 + 1)ei2nπ]

= ±i[ln(
√

2 + 1) + i2nπ]

= 2nπ ± i ln(
√

2 + 1).


