MATH 206 HOMEWORK 4 SOLUTIONS

Page 71 Exercise 2: Show that $e^{iz} = \cos z + i \sin z$ for every complex number z. **Solution:** We can do this easily using equation (1) on page 69

$$\cos z + i \sin z = \frac{e^{iz} + e^{-iz}}{2} + i \frac{e^{iz} - e^{-iz}}{2i} = e^{iz}$$

We can also use equations (11) and (12) on page 70 to write the real and imaginary parts of $\cos z + i \sin z$ and after simplifying it obtain the real and imaginary parts of e^{iz} where we use equation (3) on page 66:

$$\cos z + i \sin z = \cos x \cosh y - i \sin x \sinh y + i (\sin x \cosh y + i \cos x \sinh y)$$

=
$$(\cos x + i \sin x) (\cosh y - \sinh y)$$

=
$$e^{ix} e^{-y}$$

=
$$e^{iz}.$$

Page 72 Exercise 11: Show that neither $\sin \overline{z}$ nor $\cos \overline{z}$ is an analytic function of z anywhere.

Solution: When z = x + iy, $\sin z = \sin x \cosh y + i \cos x \sinh y$. Putting $\overline{z} = x - iy$ for z we obtain $\sin \overline{z} = \sin x \cosh y - i \cos x \sinh y = u + iv$. We check that the Cauchy-Riemann equations $u_x = v_y$ and $u_y = -v_x$ hold only when $z = (2n + 1/2)\pi$, for $n \in \mathbb{Z}$. These are isolated points. A function is called analytic when Cauchy-Riemann equations hold in an open set. See section 20 on page 55. So $\sin \overline{z}$ is not analytic anywhere.

Similarly $\cos \overline{z} = \cos x \cosh y + i \sin x \sinh y = u + iv$, and the Cauchy-Riemann equations hold when $z = n\pi$ for $n \in \mathbb{Z}$. Thus $\cos \overline{z}$ is not analytic anywhere, for the same reason as above.

Page 80 Exercise 13: Show that

(a) the function Log(z-i) is analytic everywhere except on the half line $y = 1, x \le 0$. (b) the function $\frac{Log(z+4)}{z^2+i}$ is analytic everywhere except at the points $\pm (1-i)/\sqrt{2}$ and on the portion $x \le -4$ of the real axis.

Solution: (a) Log w is analytic for every value of w = u + iv except on the half line v = 0, $u \le 0$. Putting z - i = x + i(y - 1) = u + iv, we see that Log(z - i) is analytic everywhere except on the half line y - 1 = 0, $x \le 0$.

(b) As in part (a), Log(z+4) is analytic everywhere except on the half line $y = 0, x \le -4$. We should also exclude the points where the denominator vanishes. For this we solve for $z^2 = -i = exp(i(-\pi/2 + 2n\pi))$. This gives $z = \pm (1-i)/\sqrt{2}$. See section 7, on page 19, for finding such roots.

Page 85 Exercise 11: Solve the equation $\sin z = 2$ for z(a) by equating real and imaginary parts in that equation. (b) using expression for $\sin^{-1} z$. **Solution:** (a) Set $\sin z = \sin x \cosh y + i \cos x \sinh y = 2$. This gives $\sin x \cosh y = 2$, $\cos x \sinh y = 0$. The second equation holds when $x = (n + 1/2)\pi$ or when y = 0. But when y = 0, the first equation becomes $\sin x = 2$, which has no solution. So we must have $x = (n + 1/2)\pi$. In that case the first equation becomes $(-1)^n \cosh y = 2$. But $\cosh y$ is always positive, so nmust be an even integer. We then solve solve for $\cosh y = \frac{e^y + e^{-y}}{2} = 2$. Putting $w = e^y$ in this equation and solving for the resulting quadratic equation, we get $w = 2 \pm \sqrt{3}$. Then $y = \pm \ln(2 + \sqrt{3})$. Here we use the observation that $2 - \sqrt{3} = 1/(2 + \sqrt{3})$. Hence the solution set is $z = (2n + 1/2)\pi \pm i \ln(2 + \sqrt{3})$.

(b) Putting z = 2 into the formula $\sin^{-1} z = -i \log[iz + (1-z^2)^{1/2}]$ we get

$$\sin^{-1} 2 = -i \log(2i \pm i\sqrt{3}) = -i \log(i(2 \pm \sqrt{3})) = -i \log[(2 \pm \sqrt{3})e^{i(\pi/2 + 2n\pi)}] = -i[\ln(2 \pm \sqrt{3}) + i(\pi/2 + 2n\pi)] = (\pi/2 + 2n\pi) \pm i \ln(2 + \sqrt{3}).$$

Page 85 Exercise 12: Solve the equation $\cos z = \sqrt{2}$. **Solution:** The formula for inverse cosine is $\cos^{-1} z = -i \log[z + i(1 - z^2)^{1/2}]$. Putting $z = \sqrt{2}$, we get

$$\cos^{-1}\sqrt{2} = -i\log[\sqrt{2} \pm 1] \\ = \pm i\log[\sqrt{2} + 1] \\ = \pm i\log[(\sqrt{2} + 1)e^{i2n\pi}] \\ = \pm i[\ln(\sqrt{2} + 1) + i2n\pi] \\ = 2n\pi \pm i\ln(\sqrt{2} + 1).$$