MATH 206 HOMEWORK 4 SOLUTIONS

Page 71 Exercise 2: Show that $e^{i z}=\cos z+i \sin z$ for every complex number z.
Solution: We can do this easily using equation (1) on page 69

$$
\cos z+i \sin z=\frac{e^{i z}+e^{-i z}}{2}+i \frac{e^{i z}-e^{-i z}}{2 i}=e^{i z}
$$

We can also use equations (11) and (12) on page 70 to write the real and imaginary parts of $\cos z+i \sin z$ and after simplifying it obtain the real and imaginary parts of $e^{i z}$ where we use equation (3) on page 66:

$$
\begin{aligned}
\cos z+i \sin z & =\cos x \cosh y-i \sin x \sinh y+i(\sin x \cosh y+i \cos x \sinh y) \\
& =(\cos x+i \sin x)(\cosh y-\sinh y) \\
& =e^{i x} e^{-y} \\
& =e^{i z}
\end{aligned}
$$

Page 72 Exercise 11: Show that neither $\sin \bar{z}$ nor $\cos \bar{z}$ is an analytic function of z anywhere.
Solution: When $z=x+i y, \sin z=\sin x \cosh y+i \cos x \sinh y$. Putting $\bar{z}=x-i y$ for z we obtain $\sin \bar{z}=\sin x \cosh y-i \cos x \sinh y=u+i v$. We check that the Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ hold only when $z=(2 n+1 / 2) \pi$, for $n \in \mathbb{Z}$. These are isolated points. A function is called analytic when Cauchy-Riemann equations hold in an open set. See section 20 on page 55 . So $\sin \bar{z}$ is not analytic anywhere.

Similarly $\cos \bar{z}=\cos x \cosh y+i \sin x \sinh y=u+i v$, and the Cauchy-Riemann equations hold when $z=n \pi$ for $n \in \mathbb{Z}$. Thus $\cos \bar{z}$ is not analytic anywhere, for the same reason as above.

Page 80 Exercise 13: Show that
(a) the function $\log (z-i)$ is analytic everywhere except on the half line $y=1, x \leq 0$.
(b) the function $\frac{\log (z+4)}{z^{2}+i}$ is analytic everywhere except at the points $\pm(1-i) / \sqrt{2}$ and on the portion $x \leq-4$ of the real axis.
Solution: (a) Log w is analytic for every value of $w=u+i v$ except on the half line $v=0$, $u \leq 0$. Putting $z-i=x+i(y-1)=u+i v$, we see that $\log (z-i)$ is analytic everywhere except on the half line $y-1=0, x \leq 0$.
(b) As in part $(a), \log (z+4)$ is analytic everywhere except on the half line $y=0, x \leq-4$. We should also exclude the points where the denominator vanishes. For this we solve for
$z^{2}=-i=\exp (i(-\pi / 2+2 n \pi))$. This gives $z= \pm(1-i) / \sqrt{2}$. See section 7 , on page 19, for finding such roots.

Page 85 Exercise 11: Solve the equation $\sin z=2$ for z
(a) by equating real and imaginary parts in that equation.
(b) using expression for $\sin ^{-1} z$.

Solution: (a) Set $\sin z=\sin x \cosh y+i \cos x \sinh y=2$. This gives
$\sin x \cosh y=2$,
$\cos x \sinh y=0$.
The second equation holds when $x=(n+1 / 2) \pi$ or when $y=0$. But when $y=0$, the first equation becomes $\sin x=2$, which has no solution. So we must have $x=(n+1 / 2) \pi$. In that case the first equation becomes $(-1)^{n} \cosh y=2$. But $\cosh y$ is always positive, so n must be an even integer. We then solve solve for $\cosh y=\frac{e^{y}+e^{-y}}{2}=2$. Putting $w=e^{y}$ in this equation and solving for the resulting quadratic equation, we get $w=2 \pm \sqrt{3}$. Then $y= \pm \ln (2+\sqrt{3})$. Here we use the observation that $2-\sqrt{3}=1 /(2+\sqrt{3})$. Hence the solution set is $z=(2 n+1 / 2) \pi \pm i \ln (2+\sqrt{3})$.
(b) Putting $z=2$ into the formula $\sin ^{-1} z=-i \log \left[i z+\left(1-z^{2}\right)^{1 / 2}\right]$ we get

$$
\begin{aligned}
\sin ^{-1} 2 & =-i \log (2 i \pm i \sqrt{3}) \\
& =-i \log (i(2 \pm \sqrt{3})) \\
& =-i \log \left[(2 \pm \sqrt{3}) e^{i(\pi / 2+2 n \pi)}\right] \\
& =-i[\ln (2 \pm \sqrt{3})+i(\pi / 2+2 n \pi)] \\
& =(\pi / 2+2 n \pi) \pm i \ln (2+\sqrt{3})
\end{aligned}
$$

Page 85 Exercise 12: Solve the equation $\cos z=\sqrt{2}$.
Solution: The formula for inverse cosine is $\cos ^{-1} z=-i \log \left[z+i\left(1-z^{2}\right)^{1 / 2}\right]$. Putting $z=\sqrt{2}$, we get

$$
\begin{aligned}
\cos ^{-1} \sqrt{2} & =-i \log [\sqrt{2} \pm 1] \\
& = \pm i \log [\sqrt{2}+1] \\
& = \pm i \log \left[(\sqrt{2}+1) e^{i 2 n \pi}\right] \\
& = \pm i[\ln (\sqrt{2}+1)+i 2 n \pi] \\
& =2 n \pi \pm i \ln (\sqrt{2}+1)
\end{aligned}
$$

