MATH 206 HOMEWORK-7 SOLUTIONS

p. 188: 1. a) The function $\frac{1}{z+z^{2}}$ is analytic in $0<|z|<1$ so that it has a Laurent series expansion at $z=0$:

$$
\frac{1}{z+z^{2}}=\frac{1}{z(z+1)}=\left(\frac{1}{z}\right)\left(\frac{1}{1-(-z)}\right)=\frac{1}{z}\left(1-z+z^{2}-\ldots\right) .
$$

The residue is hence $b_{1}=1$.
b) The function $z \cos \left(\frac{1}{z}\right)$ is analytic in $0<|z|<\infty$ so that it has a Laurent series expansion at $z=0$:

$$
z \cos \left(\frac{1}{z}\right)=z\left(1-\frac{1}{2!} \frac{1}{z^{2}}+\frac{1}{4!} \frac{1}{z^{4}}-\ldots\right)
$$

Hence, $b_{1}=-1 / 2$.
c) The function $\frac{z-\sin z}{z}$ is analytic in $0<|z|<\infty$ so that it has a Laurent series expansion at $z=\frac{\tilde{0}}{0}$:

$$
\frac{z-\sin z}{z}=1-\frac{1}{z}\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots\right)=\frac{z^{2}}{3!}-\frac{z^{4}}{5!}-\ldots
$$

Hence $b_{1}=0$.
d) The function $\frac{\cot z}{z^{4}}=\frac{\cos z}{z^{4} \sin z}$ is analytic in $0<|z|<\pi$ so that it has a Laurent series expansion at $z=0$. The coefficient of z^{3} in the Laurent series expansion of $\frac{\cos z}{\sin z}$ will give the residue b_{1}. By long division

$$
\frac{\cos z}{\sin z}=\frac{1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\ldots}{z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots}=\frac{1}{z}-\frac{1}{3} z-\frac{1}{45} z^{3}-\ldots
$$

and $b_{1}=-1 / 45$.
e) The function $\frac{\sinh z}{z^{4}\left(1-z^{2}\right)}$ is analytic in $0<|z|<1$ so that it has a Laurent series expansion at $z=0$:
$\frac{\sinh z}{z^{4}\left(1-z^{2}\right)}=\frac{1}{z^{4}}\left(z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\ldots\right)\left(1+z^{2}+z^{4}+\ldots\right)=\frac{1}{z^{4}}\left[z+\left(1+\frac{1}{3!}\right) z^{3}+\left(1+\frac{1}{3!}+\frac{1}{5!}\right) z^{5}+\ldots\right]$.
Hence $b_{1}=1+\frac{1}{3!}=\frac{7}{6}$.
p. 208: 7 .

$$
\text { P.V. } \int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)}=\text { ? }
$$

Let

$$
f(z)=\frac{z}{\left(z^{2}+1\right)\left(z^{2}+2 z+2\right)}
$$

which has singularities $i,-1+i$ in the positively oriented contour consisting of the real segment $[-R, R]$ and the semicircle C_{R} of radius R in the upper half of the complex plane, with $R>\sqrt{2}$. By the Residue Theorem

$$
\begin{gathered}
\text { P.V. } \int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)}=\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{x d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)} \\
=\operatorname{Re}\left[2 \pi i\left(B_{1}+B_{2}\right)\right]-\operatorname{Re}\left(\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z\right),
\end{gathered}
$$

where B_{1} and B_{2} are the residues at i and $-1+i$ of $f(z)$, respectively. Now

$$
\begin{aligned}
B_{1} & =\left.\frac{z}{(z+i)\left(z^{2}+2 z+2\right)}\right|_{z=i}=\frac{i}{2 i(1+2 i)}=\frac{1-2 i}{10} \\
B_{2} & =\left.\frac{z}{\left(z^{2}+1\right)(z+1+i)}\right|_{z=-1+i}=\frac{-1+3 i}{10}
\end{aligned}
$$

On $C_{R}, z=R \exp (i \theta), 0 \leq \theta \leq \pi$ so that

$$
\left|\int_{C_{R}} f(z) d z\right| \leq \frac{\pi R^{2}}{\left(R^{2}-1\right)\left[(R-1)^{2}-1\right]}
$$

It follows that

$$
\operatorname{Re}\left(\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z\right)=0
$$

and

$$
\text { P.V. } \int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)}=\operatorname{Re}\left[2 i \pi\left(\frac{1-2 i}{10}+\frac{-1+3 i}{10}\right)\right]=-\frac{\pi}{5} .
$$

p. 215: 12. The function $f(z)=\exp \left(i z^{2}\right)$ is analytic everywhere. By Cauchy-Goursat Theorem its contour integral along the positively oriented contour consisting of the real segment $C_{1}: z=x, 0 \leq x \leq R$, the segment of a circle $C_{R}: z=\operatorname{Rexp}(i \theta), 0 \leq \theta \leq \pi / 4$, and the ray C_{2} where $-C_{2}$ is parameterized as: $z=\operatorname{rexp}(i \pi / 4), 0 \leq r \leq R$, has value zero. Thus,

$$
\begin{aligned}
0 & =\int_{0}^{R} \exp \left(i x^{2}\right) d x+\int_{R}^{0} \exp \left(i r^{2} e^{i \pi / 2}\right) d r+\int_{C_{R}} \exp \left(i z^{2}\right) d z \\
& =\int_{0}^{R} \exp \left(i x^{2}\right) d x-\frac{1+i}{\sqrt{2}} \int_{0}^{R} \exp \left(-r^{2}\right) d r+\int_{C_{R}} \exp \left(i z^{2}\right) d z
\end{aligned}
$$

where the first two integrals are integrals of $\exp \left(i z^{2}\right)$ along C_{1} and C_{2}, respectively. Since $\exp \left(i x^{2}\right)=\cos x^{2}+i \sin x^{2}$, equating the real and imaginary parts, we have

$$
\begin{align*}
\int_{0}^{R} \cos x^{2} d x & =\frac{1}{\sqrt{2}} \int_{0}^{R} \exp \left(-r^{2}\right) d r+\operatorname{Re}\left[\int_{C_{R}} \exp \left(i z^{2}\right) d z\right] \tag{1}\\
\int_{0}^{R} \sin x^{2} d x & =\frac{1}{\sqrt{2}} \int_{0}^{R} \exp \left(-r^{2}\right) d r+\operatorname{Im}\left[\int_{C_{R}} \exp \left(i z^{2}\right) d z\right] . \tag{2}
\end{align*}
$$

Now, on $C_{R}, z=\operatorname{Rexp}(i \theta), 0 \leq \theta \leq \pi / 4$ so that

$$
\left|\int_{C_{R}} \exp \left(i z^{2}\right) d z\right| \leq \int_{0}^{\pi / 4}\left|\exp \left(i R^{2} e^{i 2 \theta}\right) i R e^{i \theta} d \theta\right| \leq R \int_{0}^{\pi / 4} \exp \left(-R^{2} \sin (2 \theta)\right) d \theta
$$

$$
=\frac{R}{2} \int_{0}^{\pi / 2} \exp \left(-R^{2} \sin (\phi)\right) d \phi \leq \frac{R}{2} \frac{\pi}{2 R^{2}}=\frac{\pi}{4 R}
$$

where the last inequality is obtained by Jordan's inequality. Thus,

$$
\lim _{R \rightarrow \infty} \operatorname{Re}\left[\int_{C_{R}} \exp \left(i z^{2}\right) d z\right]=0, \lim _{R \rightarrow \infty} \operatorname{Im}\left[\int_{C_{R}} \exp \left(i z^{2}\right) d z\right]=0
$$

and we obtain, by taking limits as $R \rightarrow \infty$ in (1) and (2),

$$
\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{1}{\sqrt{2}} \int_{0}^{\infty} \exp \left(-r^{2}\right) d r
$$

To evaluate the last integral, we consider

$$
\left(\int_{0}^{\infty} \exp \left(-x^{2}\right) d x\right)\left(\int_{0}^{\infty} \exp \left(-y^{2}\right) d y\right)=\int_{0}^{\infty} \int_{0}^{\infty} \exp \left[-\left(x^{2}+y^{2}\right)\right] d x d y
$$

Changing to polar coordinates $x=r \cos \theta, y=r \sin \theta$ (See a book on calculus!), where $0 \leq r<\infty$ and $0 \leq \theta \leq \pi / 2$ (i.e., the first quadrant), we have

$$
\int_{0}^{\infty} \int_{0}^{\infty} \exp \left[-\left(x^{2}+y^{2}\right)\right] d x d y=\int_{0}^{\pi / 2} \int_{0}^{\infty} \exp \left(-r^{2}\right) r d r d \theta=\pi / 4
$$

This gives

$$
\int_{0}^{\infty} \exp \left(-x^{2}\right) d x=\frac{\sqrt{\pi}}{2}
$$

and

$$
\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{1}{\sqrt{2}} \frac{\sqrt{\pi}}{2} .
$$

p. 226: 2. To evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{a} d x}{\left(x^{2}+1\right)^{2}},-1<a<3
$$

we let

$$
f(z)=\frac{\exp (\operatorname{alog} z)}{\left(z^{2}+1\right)^{2}},|z|>0,-\pi / 2<\arg z<3 \pi / 2
$$

and consider its integral along the positively oriented contour consisting of the segment $L_{1}: z=r, \rho \leq r \leq R$, the large semi-circle $C_{R}: z=R \exp (i \theta), 0 \leq \theta \leq \pi$, the segment L_{2} where $-L_{2}$ is parameterized as: $z=-r, \rho \leq r \leq R$, and the small semicircle C_{ρ} where $-C_{\rho}$ is parameterized as: $z=\rho \exp (i \theta), 0 \leq \theta \leq \pi$. The function $f(z)$ has only one singularity inside the contour at $z=i$ so that, by the Residue Theorem,

$$
\begin{equation*}
\int_{\rho}^{R} \frac{r^{a}}{\left(r^{2}+1\right)^{2}} d r-\int_{\rho}^{R} \frac{\exp (a \ln r+i a \pi)}{\left(r^{2}+1\right)^{2}} d r=2 i \pi \phi^{\prime}(i)-\int_{C_{\rho}} f(z) d z-\int_{C_{R}} f(z) d z \tag{3}
\end{equation*}
$$

where

$$
f(z)=\frac{\phi(z)}{(z-i)^{2}}, \quad \phi(z)=\frac{\exp (a \log z)}{(z+i)^{2}}
$$

Now,

$$
\phi^{\prime}(z)=\frac{a \exp (a \log z)(z+i)-2 z \exp (a \log z)}{z(z+i)^{3}}, \phi^{\prime}(i)=\frac{\exp (i a \pi / 2)(2 i a-2 i)}{-i 8 i} .
$$

Moreover, on C_{R} and on C_{ρ}, it is easy to show that

$$
\left|\int_{C_{R}} f(z) d z\right| \leq \frac{\pi R^{1+a-4}}{\left(1-\frac{1}{R^{2}}\right)^{2}},\left|\int_{C_{\rho}} f(z) d z\right| \leq \frac{\pi \rho^{1+a}}{\left(1-\rho^{2}\right)^{2}}
$$

so that by $1+a-4<0$ and by $1+a>0$, the limits as $R \rightarrow \infty$ and as $\rho \rightarrow 0$ are both zero. It now follows from (3) on taking limits that

$$
[1+\exp (i a \pi)] \int_{0}^{\infty} \frac{r^{a}}{\left(r^{2}+1\right)^{2}} d r=\frac{2 \pi i^{2}(a-1) \exp (i a \pi / 2)}{4}
$$

From this it follows that

$$
\int_{0}^{\infty} \frac{r^{a}}{\left(r^{2}+1\right)^{2}} d r=\frac{\pi(1-a)}{4 \cos (a \pi / 2)}
$$

p. 227: 4. We let

$$
f(z)=\frac{(\log z)^{2}}{\left(z^{2}+1\right)},|z|>0,-\pi / 2<\arg z<3 \pi / 2
$$

and consider its integral along the positively oriented contour consisting of the segment $L_{1}: z-r, \rho \leq r \leq R$, the large semi-circle $C_{R}: z=R \exp (i \theta), 0 \leq \theta \leq \pi$, the segment L_{2} where $-L_{2}$ is parameterized as: $z=-r, \rho \leq r \leq R$, and the small semi-circle C_{ρ} where $-C_{\rho}$ is parameterized as: $z=\rho \exp (-i \theta), 0 \leq \theta \leq \pi$. The function $f(z)$ has only one singularity inside the contour at $z=i$ so that, by the Residue Theorem,

$$
\begin{equation*}
\int_{\rho}^{R} \frac{(\ln r)^{2}}{r^{2}+1} d r+\int_{\rho}^{R} \frac{(\ln r+i \pi)^{2}}{r^{2}+1} d r=2 i \pi \phi(i)-\int_{C_{\rho}} f(z) d z-\int_{C_{R}} f(z) d z \tag{4}
\end{equation*}
$$

where

$$
\phi(z)=\frac{(\log z)^{2}}{z+i}, \phi(i)=\frac{(i \pi / 2)^{2}}{2 i}=i \frac{\pi^{2}}{8} .
$$

Hence,
$2 \int_{\rho}^{R} \frac{(\ln r)^{2}}{r^{2}+1} d r+i 2 \pi \int_{\rho}^{R} \frac{\ln r}{r^{2}+1} d r-\pi^{2} \int_{\rho}^{R} \frac{1}{r^{2}+1} d r=-\frac{\pi^{3}}{4}-\int_{C_{\rho}} f(z) d z-\int_{C_{R}} f(z) d z$.
Now,

$$
\left|\int_{C_{R}} f(z) d z\right| \leq \pi \frac{(\ln R+\pi)^{2}}{\frac{R^{2}-1}{R}},\left|\int_{C_{\rho}} f(z) d z\right| \leq \pi \frac{(\ln \rho+\pi)^{2}}{\frac{1-\rho^{2}}{\rho}}
$$

and L'Hospital's rule gives that the limits as $R \rightarrow \infty$ and as $\rho \rightarrow 0$ are both zero. It now follows from (4) on taking limits that
$\int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r+\int_{0}^{\infty} \frac{(\ln r+i \pi)^{2}}{r^{2}+1} d r=2 \int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r+i 2 \pi \int_{0}^{\infty} \frac{\ln r}{r^{2}+1} d r-\frac{\pi^{3}}{2}=-\frac{\pi^{3}}{4}$,
where we have also used the fact, from an earlier exercise, that

$$
\int_{0}^{\infty} \frac{1}{r^{2}+1} d r=\frac{\pi}{2}
$$

By equating the real and imaginary parts, we finally obtain

$$
\int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r=\frac{\pi^{3}}{8}, \int_{0}^{\infty} \frac{\ln r}{r^{2}+1} d r=0
$$

Comments to ozguler@ee.bilkent.edu.tr

