
MATH 206
HOMEWORK-7 SOLUTIONS

p. 188: 1. a) The function
1

z + z2
is analytic in 0 < |z| < 1 so that it has a Laurent series

expansion at z = 0:

1

z + z2
=

1

z(z + 1)
=

(
1

z

) (
1

1− (−z)

)
=

1

z
(1− z + z2 − ...).

The residue is hence b1 = 1.

b) The function zcos(
1

z
) is analytic in 0 < |z| < ∞ so that it has a Laurent series

expansion at z = 0:

zcos(
1

z
) = z(1− 1

2!

1

z2
+

1

4!

1

z4
− ...).

Hence, b1 = −1/2.

c) The function
z − sin z

z
is analytic in 0 < |z| < ∞ so that it has a Laurent series

expansion at z = 0:

z − sin z

z
= 1− 1

z
(z − z3

3!
+

z5

5!
− ...) =

z2

3!
− z4

5!
− ...

Hence b1 = 0.

d) The function
cot z

z4
=

cos z

z4sin z
is analytic in 0 < |z| < π so that it has a Laurent

series expansion at z = 0. The coefficient of z3 in the Laurent series expansion of
cos z
sin z

will give the residue b1. By long division

cos z

sin z
=

1− z2

2!
+ z4

4!
− ...

z − z3

3!
+ z5

5!
− ...

=
1

z
− 1

3
z − 1

45
z3 − ...

and b1 = −1/45.

e) The function sinh z
z4(1−z2)

is analytic in 0 < |z| < 1 so that it has a Laurent series
expansion at z = 0:

sinh z

z4(1− z2)
=

1

z4
(z+

z3

3!
+

z5

5!
+...)(1+z2+z4+...) =

1

z4
[z+(1+

1

3!
)z3+(1+

1

3!
+

1

5!
)z5+...].

Hence b1 = 1 + 1
3!

= 7
6
.

p. 208: 7.

P.V.
∫ ∞

−∞
x dx

(x2 + 1)(x2 + 2x + 2)
=?

Let
f(z) =

z

(z2 + 1)(z2 + 2z + 2)
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which has singularities i,−1+ i in the positively oriented contour consisting of the real
segment [−R, R] and the semicircle CR of radius R in the upper half of the complex
plane, with R >

√
2. By the Residue Theorem

P.V.
∫ ∞

−∞
x dx

(x2 + 1)(x2 + 2x + 2)
= lim

R→∞

∫ R

−R

x dx

(x2 + 1)(x2 + 2x + 2)

= Re[2π i(B1 + B2)]−Re( lim
R→∞

∫

CR

f(z)dz),

where B1 and B2 are the residues at i and −1 + i of f(z), respectively. Now

B1 =
z

(z + i)(z2 + 2z + 2)
|z=i =

i

2i(1 + 2i)
=

1− 2i

10
,

B2 =
z

(z2 + 1)(z + 1 + i)
|z=−1+i =

−1 + 3i

10
.

On CR, z = R exp(iθ), 0 ≤ θ ≤ π so that

|
∫

CR

f(z)dz| ≤ π R2

(R2 − 1)[(R− 1)2 − 1]
.

It follows that
Re( lim

R→∞

∫

CR

f(z)dz) = 0

and

P.V.
∫ ∞

−∞
x dx

(x2 + 1)(x2 + 2x + 2)
= Re[2iπ(

1− 2i

10
+
−1 + 3i

10
)] = −π

5
.

p. 215: 12. The function f(z) = exp(iz2) is analytic everywhere. By Cauchy-Goursat Theorem its
contour integral along the positively oriented contour consisting of the real segment
C1 : z = x, 0 ≤ x ≤ R, the segment of a circle CR : z = Rexp(iθ), 0 ≤ θ ≤ π/4, and
the ray C2 where −C2 is parameterized as: z = rexp(iπ/4), 0 ≤ r ≤ R, has value zero.
Thus,

0 =
∫ R

0
exp(ix2) dx +

∫ 0

R
exp(ir2eiπ/2) dr +

∫

CR

exp(iz2) dz

=
∫ R

0
exp(ix2) dx− 1 + i√

2

∫ R

0
exp(−r2) dr +

∫

CR

exp(iz2) dz,

where the first two integrals are integrals of exp(iz2) along C1 and C2, respectively.
Since exp(ix2) = cos x2 + i sin x2, equating the real and imaginary parts, we have

∫ R

0
cos x2 dx =

1√
2

∫ R

0
exp(−r2) dr + Re[

∫

CR

exp(iz2) dz] (1)

∫ R

0
sin x2 dx =

1√
2

∫ R

0
exp(−r2) dr + Im[

∫

CR

exp(iz2) dz]. (2)

Now, on CR, z = Rexp(iθ), 0 ≤ θ ≤ π/4 so that

|
∫

CR

exp(iz2) dz| ≤
∫ π/4

0
|exp(iR2 ei2θ)iReiθ dθ| ≤ R

∫ π/4

0
exp(−R2 sin(2θ)) dθ

2



=
R

2

∫ π/2

0
exp(−R2 sin(φ)) dφ ≤ R

2

π

2R2
=

π

4R
,

where the last inequality is obtained by Jordan’s inequality. Thus,

lim
R→∞

Re[
∫

CR

exp(iz2) dz] = 0, lim
R→∞

Im[
∫

CR

exp(iz2) dz] = 0

and we obtain, by taking limits as R →∞ in (1) and (2),

∫ ∞

0
cos x2 dx =

∫ ∞

0
sin x2 dx =

1√
2

∫ ∞

0
exp(−r2) dr.

To evaluate the last integral, we consider

(
∫ ∞

0
exp(−x2) dx)(

∫ ∞

0
exp(−y2) dy) =

∫ ∞

0

∫ ∞

0
exp[−(x2 + y2)] dx dy.

Changing to polar coordinates x = r cosθ, y = r sinθ (See a book on calculus!), where
0 ≤ r < ∞ and 0 ≤ θ ≤ π/2 (i.e., the first quadrant), we have

∫ ∞

0

∫ ∞

0
exp[−(x2 + y2)] dx dy =

∫ π/2

0

∫ ∞

0
exp(−r2) r dr dθ = π/4.

This gives ∫ ∞

0
exp(−x2) dx =

√
π

2
,

and ∫ ∞

0
cos x2 dx =

∫ ∞

0
sin x2 dx =

1√
2

√
π

2
.

p. 226: 2. To evaluate the integral ∫ ∞

0

xa dx

(x2 + 1)2
, −1 < a < 3,

we let

f(z) =
exp(alog z)

(z2 + 1)2
, |z| > 0, −π/2 < arg z < 3π/2

and consider its integral along the positively oriented contour consisting of the segment
L1 : z = r, ρ ≤ r ≤ R, the large semi-circle CR : z = R exp(iθ), 0 ≤ θ ≤ π, the
segment L2 where −L2 is parameterized as: z = −r, ρ ≤ r ≤ R, and the small semi-
circle Cρ where −Cρ is parameterized as: z = ρ exp(iθ), 0 ≤ θ ≤ π. The function f(z)
has only one singularity inside the contour at z = i so that, by the Residue Theorem,

∫ R

ρ

ra

(r2 + 1)2
dr−

∫ R

ρ

exp(a ln r + iaπ)

(r2 + 1)2
dr = 2iπφ′(i)−

∫

Cρ

f(z) dz −
∫

CR

f(z) dz, (3)

where

f(z) =
φ(z)

(z − i)2
, φ(z) =

exp(a log z)

(z + i)2
.

Now,

φ′(z) =
a exp(a log z)(z + i)− 2z exp(a log z)

z(z + i)3
, φ′(i) =

exp(iaπ/2)(2ia− 2i)

−i 8i
.
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Moreover, on CR and on Cρ, it is easy to show that

|
∫

CR

f(z) dz| ≤ π R1+a−4

(1− 1
R2 )2

, |
∫

Cρ

f(z) dz| ≤ π ρ1+a

(1− ρ2)2
,

so that by 1+ a− 4 < 0 and by 1+ a > 0, the limits as R →∞ and as ρ → 0 are both
zero. It now follows from (3) on taking limits that

[1 + exp(iaπ)]
∫ ∞

0

ra

(r2 + 1)2
dr =

2πi2(a− 1) exp(iaπ/2)

4
.

From this it follows that
∫ ∞

0

ra

(r2 + 1)2
dr =

π (1− a)

4cos(aπ/2)
.

p. 227: 4. We let

f(z) =
(log z)2

(z2 + 1)
, |z| > 0, −π/2 < arg z < 3π/2

and consider its integral along the positively oriented contour consisting of the segment
L1 : z−r, ρ ≤ r ≤ R, the large semi-circle CR : z = R exp(iθ), 0 ≤ θ ≤ π, the segment
L2 where −L2 is parameterized as: z = −r, ρ ≤ r ≤ R, and the small semi-circle Cρ

where −Cρ is parameterized as: z = ρ exp(−iθ), 0 ≤ θ ≤ π. The function f(z) has
only one singularity inside the contour at z = i so that, by the Residue Theorem,

∫ R

ρ

(ln r)2

r2 + 1
dr +

∫ R

ρ

(ln r + iπ)2

r2 + 1
dr = 2iπφ(i)−

∫

Cρ

f(z) dz −
∫

CR

f(z) dz, (4)

where

φ(z) =
(log z)2

z + i
, φ(i) =

(iπ/2)2

2i
= i

π2

8
.

Hence,

2
∫ R

ρ

(ln r)2

r2 + 1
dr+i2π

∫ R

ρ

ln r

r2 + 1
dr−π2

∫ R

ρ

1

r2 + 1
dr = −π3

4
−

∫

Cρ

f(z) dz−
∫

CR

f(z) dz.

Now,

|
∫

CR

f(z) dz| ≤ π
(lnR + π)2

R2−1
R

, |
∫

Cρ

f(z) dz| ≤ π
(ln ρ + π)2

1−ρ2

ρ

and L’Hospital’s rule gives that the limits as R → ∞ and as ρ → 0 are both zero. It
now follows from (4) on taking limits that
∫ ∞

0

(ln r)2

r2 + 1
dr +

∫ ∞

0

(ln r + iπ)2

r2 + 1
dr = 2

∫ ∞

0

(ln r)2

r2 + 1
dr + i2π

∫ ∞

0

ln r

r2 + 1
dr− π3

2
= −π3

4
,

where we have also used the fact, from an earlier exercise, that
∫ ∞

0

1

r2 + 1
dr =

π

2
.

By equating the real and imaginary parts, we finally obtain
∫ ∞

0

(ln r)2

r2 + 1
dr =

π3

8
,

∫ ∞

0

ln r

r2 + 1
dr = 0.

Comments to ozguler@ee.bilkent.edu.tr
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