MATH 206
HOMEWORK-7 SOLUTIONS

p. 188: 1. a) The function e is analytic in 0 < |z| < 1 so that it has a Laurent series
z+z

expansion at z = 0:

e RIC] (== BLIES

The residue is hence b; = 1.

1
b) The function zcos(—) is analytic in 0 < |z| < oo so that it has a Laurent series
z

expansion at z = 0:

<1) (1 11 n 11 )
zeos(=)=z(1— ==+ —=— — ...).
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Hence, by = —1/2.
. Z—sinz ., . . .
¢) The function ——— is analytic in 0 < |z| < oo so that it has a Laurent series
z
expansion at z = 0:
z—sinz . 1( z3+z5 ) 22 24
—=1l-—-(z—-=+=—-.) == — = -
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Hence b; = 0.
cot z o8 z
d) The function ——~ = ———— is analytic in 0 < [z| < 7 so that it has a Laurent
2 z4sin z

series expansion at z = 0. The coefficient of 2® in the Laurent series expansion of
€232 will give the residue b;. By long division
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and by = —1/45.

e) The function Zf(iff;) is analytic in 0 < |z| < 1 so that it has a Laurent series

expansion at z = 0:

sinh z 1 23 z5 9 4 1 1 5 1 1 :

Hence by =1+ 4, = £.
D. 208: 7.
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p. 215: 12.

which has singularities 7, —1 41 in the positively oriented contour consisting of the real
segment [—R, R| and the semicircle Cr of radius R in the upper half of the complex
plane, with R > v/2. By the Residue Theorem

PV/ xdx . / rdr
= lim
(22 4+1)(22 4+ 22 +2) R—oooJ-pr (22 +1)(2?+ 22+ 2)

= Re]2mi(B, + By)| — Re(}%i_rgo o f(2)dz),

where B; and By are the residues at i and —1 + i of f(z), respectively. Now
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On Cg, z = Rexp(if), 0 < 0 < 7 so that
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It follows that
Re( lim f(2)dz) =

R—oo JCOR

and
z dx ) 1—2z'+—1+3i 7
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The function f(z) = exp(iz?) is analytic everywhere. By Cauchy-Goursat Theorem its
contour integral along the positively oriented contour consisting of the real segment
Cy:z=12,0 <z <R, the segment of a circle Cr : z = Rexp(if),0 < § < 7/4, and
the ray Cy where —Cy is parameterized as: z = rexp(in/4),0 < r < R, has value zero.
Thus,

R
0 = / exp(iz?) dx +/ exp(ir?e™?) dr + exp(iz?) dz
0 Cr
R ) 1 + 1 2 . 9
= / exp(iz?) dx — e:ch(—r )dr + exp(iz®)dz,
0 V2 Jo

Cr

where the first two integrals are integrals of exp(iz?) along C; and Cs, respectively.
Since exp(iz?) = cos 2* + i sin x?, equating the real and imaginary parts, we have

/OR cos x* dx = \/_/ exp(—r?) dr + Re[/ exp(iz?) dz] (1)

Cr

/OR sinx? dr = \/_/ exp(—r?) dr + Im[/ exp(iz?) dz]. (2)

Cr
Now, on Cg, z = Rexp(if), 0 < 0 < 7 /4 so that

w/4
|/ exp(iz?) dz| </ lexp(iR? e?)iRe™ df| < R/ exp(—R? sin(20)) df
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p. 226: 2.

R R « T

w/2 9
2/0 exp(—R* sin(¢)) do < 5502 — 1R’

where the last inequality is obtained by Jordan’s inequality. Thus,

l'R/ '2d:0,1'I/ 2%)dz] = 0
Aim e - exp(iz®) dz] A m| CReacp(zz) 2]

and we obtain, by taking limits as R — oo in (1) and (2),

00 00 1 00
Yo = [ sinatde == [ eap(—1?)dr.
/0 cosz"dr = | sing”dz 75 Jo exp(—r?)dr

To evaluate the last integral, we consider

(| cap(=a®)dr)( [ exp(—y)dy) = [ [ eapl—(a® + )] drdy.

Changing to polar coordinates = = r cosfl, y = r sinf (See a book on calculus!), where
0<r<oocand0<6<m7/2 (ie., the first quadrant), we have

00 0O w/2 foo
/ / exp[—(z* + y?)] dx dy = / / exp(—r?)rdrdf = 7 /4.
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This gives

/oo exp(—x?) dr = \/;,
0

and
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To evaluate the integral
©  z%dx
/ T 1<a<3,
o (

x2+1)27
we let l
f(z)= W, |z| >0, —7/2 < argz < 3m/2

and consider its integral along the positively oriented contour consisting of the segment
Li:z=r p<r <R, the large semi-circle Cr : z = Rexp(if), 0 < 6§ < , the
segment Lo where — Ly is parameterized as: z = —r, p < r < R, and the small semi-
circle C, where —C), is parameterized as: z = pexp(if), 0 < § < 7. The function f(z)
has only one singularity inside the contour at z = ¢ so that, by the Residue Theorem,

[ ot [P by = ind )~ [ e [ S 6)

r?+1)? (r2 +1)2 o, o
where 5(2) alog )
= i _ &rplatogz)
f(z)—(z_i)y o(z) = Gt
Now,
#(2) = aexp(alogz)(z+1i) — 2z exp(alog 2)7 o) = e:t:p(iaw/Q?(?ia — 22’).
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p. 227: 4.

Moreover, on Cr and on C,, it is easy to show that

7.[.}%1Jra4 p1+a
], fE el < o | [ F@ e < 7o

sothat by 1+a—4 < 0and by 1+a > O, the limits as R — oo and as p — 0 are both
zero. It now follows from (3) on taking limits that

re 21i%(a — 1) exp(iam/2)

[1+ exp(iar)] /OOO m dr = 1

From this it follows that

/00 re (1—a)

r= .
0o (r2+41)? 4cos(am/2)
We let

(log 2)?
z) = >0, —nm/2<argz < 3m/2
F6) = (s gy > 0. /2 < arg = < 37/

and consider its integral along the positively oriented contour consisting of the segment
Li:z—r, p<r <R, the large semi-circle Cg : z = Rexp(if), 0 < 0 < 7, the segment
Ly where —Ls is parameterized as: z = —r, p < r < R, and the small semi-circle C,
where —C, is parameterized as: z = pexp(—i0), 0 < § < 7. The function f(z) has
only one singularity inside the contour at z =i so that, by the Residue Theorem,

/pRWdu/pRWWdr:gmgb(@)—/ £(2) dz—/c f(2)dz, (4)

r?+1 r2+1 Cy R
where (log =) (in/2)? )
~ (log = N G _
Hence,
(Inr)? , R nr , (B 1 3
2/ dr+227r/p T2+1dr—7r /p Mdr:—4—/Cpf(z)dz—/CRf(z)dz.
2
|/ dz|<7rlnR+7T |/ 2)dz| <7 W

p
and L'Hospital’s rule gives that the hmlts as R — oo and as p — 0 are both zero. It
now follows from (4) on taking limits that

3 3

< (Inr)? > (Inr +ir)? < Inr m 7
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where we have also used the fact, from an earher exercise, that
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By equating the real and imaginary parts we finally obtain

/ (Inr)* /00 Inr _o
0 r2+1 B 8 7"2+1 '

Comments to ozguler@ee.bilkent.edu.tr



