MATH 206 HW\#8

1) Find the Laplace transforms of the following using Matlab.
a) $f(t)=t^{3}+2 t^{2}-t+1$
b) $f(t)=\left(t^{2}+2 t-1\right) \cdot e^{2 t}$
2) a) First, find by hand the Laplace transform of the $2^{\text {nd }}$ order differential equation:

$$
\frac{d^{2}}{d t^{2}} f(t)-\frac{d}{d t} f(t)-2 f(t)=\delta(t-1)
$$

subject to initial conditions:

$$
f^{(1)}(0)=0 \quad f(0)=0
$$

b) Find the solution using the command ilaplace(...) in MATLAB; i.e. inverse-Laplace transform the result of part a. Comment on the result.
Hint: Using the command simple(...) may help you on simplification of the result.
3) Use Rouche's Theorem to determine the number of roots of

$$
4 z^{5}+7 z^{2}-1=0
$$

inside the circle $|z|=\frac{1}{2}$ about the origin. Verify your results by finding the roots in MATLAB.
Hint: The statement of Rouche's Theorem is on page 231 (Theorem 2). To see how Rouche is used, see Example 2 on page 232. Also choose $f(z)$ and $g(z)$ accordingly, so that $|f(z)|>|g(z)|$ on the circle $|z|=\frac{1}{2}$.
4) Using MATLAB, evaluate the integral

$$
\int_{0}^{\infty} \frac{\sin (x)}{x} d x
$$

Then compare the computed result with the calculated result (Chp.7, Sec.63, pg.220)
Hint: The symbolic inf means ∞ in MATLAB.

