STUDENT NO:

Math 206 Complex Calculus – Final Exam

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet.

No correct answer without a satisfying reasoning is accepted. Show your work in detail. Write your name on the top of every page.

Q-1) Consider the difference equation

 $y(n+2) - 4y(n+1) + 4y(n) = 2^n, y(0) = 1, y(1) = -1.$

Solution: Example 3-14 of the notes.

Q-2) Solve the initial value problem

$$f''(t) + f(t) = H(t-2)sin(3t-6), f(0) = 1, \ f'(t) = 0.$$

Answer:
$$f(t) = \left[\frac{3}{8}sin(t-2) - \frac{1}{8}sin(3t-6)\right]H(t-2) + cos(t)H(t).$$

NAME:

Q-3) Determine the value of the improper integral

$$\int_0^\infty \frac{(\cos ax - \cos bx)dx}{x^2}, \ a > 0, \ b > 0,$$

by contour integration for a suitably chosen simple closed contour in z-plane. If you evaluate certain limits in your derivation, show all steps of your evaluation clearly. Answer: $\pi(b-a)$

STUDENT NO:

Q-4) (i) (10 pts.) Find a linear fractional transformation w = T(z) that maps the three points $z_1 = \infty$, $z_2 = 1$, $z_3 = -i$ onto $w_1 = 1$, $w_2 = i$, $w_3 = -i$, respectively.

(ii) (10 pts.) What is the image of the region Re(z-1) > Im(z) under this transformation? (iii) (5pts.) If $Z = \frac{1}{w} - 2 = \frac{1}{T(z)} - 2$, draw and indicate the image of Re(z-1) > Im(z) in the Z-plane? Answer: (i) $w = T(z) = \frac{z-1+i}{z}$.

- (ii) |w| < 1.
- (iii)|Z+2| > 1.