\qquad
\qquad

Math 206 Complex Calculus - Final Exam

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet.
No correct answer without a satisfying reasoning is accepted. Show your work in detail.
Write your name on the top of every page.
Q-1) Consider the difference equation

$$
y(n+2)-4 y(n+1)+4 y(n)=2^{n}, y(0)=1, y(1)=-1 .
$$

Solution: Example 3-14 of the notes.

Q-2) Solve the initial value problem

$$
f^{\prime \prime}(t)+f(t)=H(t-2) \sin (3 t-6), f(0)=1, f^{\prime}(t)=0 .
$$

Answer: $f(t)=\left[\frac{3}{8} \sin (t-2)-\frac{1}{8} \sin (3 t-6)\right] H(t-2)+\cos (t) H(t)$.

Q-3) Determine the value of the improper integral

$$
\int_{0}^{\infty} \frac{(\cos a x-\cos b x) d x}{x^{2}}, a>0, b>0
$$

by contour integration for a suitably chosen simple closed contour in z-plane. If you evaluate certain limits in your derivation, show all steps of your evaluation clearly.
Answer: $\pi(b-a)$

Q-4) (i) (10 pts.) Find a linear fractional transformation $w=T(z)$ that maps the three points $z_{1}=\infty, z_{2}=1, z_{3}=-i$ onto $w_{1}=1, w_{2}=i, w_{3}=-i$, respectively.
(ii) (10 pts.) What is the image of the region $\operatorname{Re}(z-1)>\operatorname{Im}(z)$ under this transformation?
(iii) (5pts.) If $Z=\frac{1}{w}-2=\frac{1}{T(z)}-2$, draw and indicate the image of $\operatorname{Re}(z-1)>\operatorname{Im}(z)$ in the Z-plane?
Answer: (i) $w=T(z)=\frac{z-1+i}{z}$.
(ii) $|w|<1$.
(iii) $|Z+2|>1$.

