MATH 213 HOMEWORK

December 2009

Q-1) Let $f_{0}, \ldots, f_{n}, \ldots$ be a sequence of functions such that the series $\sum_{n=0}^{\infty} f_{n}$ converges to a function f. Let

$$
\left(f_{0}+\cdots+f_{n_{1}}\right)+\left(f_{n_{1}+1}+\cdots+f_{n_{2}}\right)+\cdots
$$

be any pattern of inserting parenthesis into this infinite sum without changing the places of any f_{n}. Show that the new series with the parenthesis also converges to f. Use this to show that
$a_{1} \cos x+b_{1} \sin x+a_{2} \cos 2 x+b_{2} \sin 2 x+\cdots=\sum_{k=0}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)$,
whenever the series converge.
Solution: Let $s_{N}=\sum_{n=0}^{N} f_{n}$ be the sequence of partial sums converging to f. Putting parenthesis amounts to choosing a subsequence of the sequence s_{n}, so the new subsequence also converges to f.

Applying to the trigonometric series above is now straightforward.

Q-2) Let $f(x)$ be a function on \mathbb{R}, which is C^{∞} and periodic with period 2π. Show that all derivatives of f are also periodic with period 2π. Using integration by parts twice in the calculation of the Fourier coefficients of f, show that the Fourier series of f converges uniformly and absolutely to f on \mathbb{R}.

Solution: Since the graph of f repeats on blocks of $[-\pi, \pi]$, it is clear that all properties of f will repeat and hence be periodic.

Let M be an upper bound for $f^{\prime \prime}(x)$ for $x \in[-\pi, \pi]$. Here is how we calculate a_{k} :

$$
\begin{aligned}
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos k x d x \\
& =\left(\left.\frac{f(x) \sin k x}{k \pi}\right|_{-\pi} ^{\pi}\right)-\frac{1}{k \pi} \int_{-\pi}^{\pi} f^{\prime}(x) \sin k x d x, \quad \text { (using by-parts) } \\
& =-\frac{1}{k \pi} \int_{-\pi}^{\pi} f^{\prime}(x) \sin k x d x \\
& =\left(\left.\frac{f^{\prime}(x) \cos k x}{k^{2} \pi}\right|_{-\pi} ^{\pi}\right)-\frac{1}{k^{2} \pi} \int_{-\pi}^{\pi} f^{\prime \prime}(x) \cos k x d x, \quad \text { (using by-parts) } \\
& =-\frac{1}{k^{2} \pi} \int_{-\pi}^{\pi} f^{\prime \prime}(x) \cos k x d x, \text { since } f^{\prime} \text { is periodic. } \\
\left|a_{k}\right| & =\frac{1}{k^{2} \pi}\left|\int_{-\pi}^{\pi} f^{\prime \prime}(x) \cos k x d x\right| \\
& \leq \frac{2 M}{k^{2}}, k=1,2, \ldots
\end{aligned}
$$

Similarly for $\left|b_{k}\right|$. Using Weierstrass M-test we conclude that the Fourier series converges uniformly and absolutely, in which case it should converge to $f(x)$.

Q-3) Consider the function f which is defined on $[-\pi, \pi]$ as follows:

$$
f(x)= \begin{cases}\exp \left(-1 / x^{2}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Use a computer algebra system to numerically write the Fourier sum $S_{6} f$ of f. Plot both f and $S_{6} f$ on the same graph.

Solution:

$S_{6} f=0.5354546575-0.4546891906 \cos (x)-0.1214137143 \cos (2 x)-0.01696975846 \cos (3 x)+$ $0.02218794214 \cos (4 x)+0.02005516168 \cos (5 x)+0.01498074181 \cos (6 x)$

As you can see, the graphs of f and $S_{6} f$ are almost indistinguishable. Recall that f is not analytic and in fact its Taylor series around $x=0$ is identically zero and hence has nothing to do with f.

Q-4) Find the Fourier series of $f(x)=|\cos x|$. Where does it converge to $f(x)$? Why? Using this Fourier series give an infinite numerical series which converges to π.

Solution:

$|\cos x|=\frac{2}{\pi}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{4 k^{2}-1} \cos 2 k x, \quad$ for x in any closed interval in $(-\pi, \pi)$.
It is easy to see that $|\cos x|$ is of bounded variation, so its Fourier series converges to the function everywhere.

Putting $x=0$ in the Fourier series above we get

$$
\pi=2+4 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{4 k^{2}-1}
$$

Q-5) Let $f(x)=|x|$ on $[-\pi, \pi]$ and extend it to \mathbb{R} periodically. Using the Fourier series of f find two numerical series, one converging to π^{2} and one converging to π^{4}.

Solution:

$$
|x|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \cos (2 k-1) x .
$$

Putting $x=0$ we find

$$
\pi^{2}=8 \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} .
$$

Using Parseval equality (since f is continuous on \mathbb{R}) we get

$$
\pi^{4}=96 \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{4}}
$$

Comments and questions to sertoz@bilkent.edu.tr

