Math 214 Advanced Calculus II Midterm Exam I

1) Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that f_{x} and f_{y} exist everywhere on \mathbb{R}^{2} but the function f itself is not differentiable at $(0,0)$. Prove however that if you further assume that f_{x} and f_{y} are continuous at the origin, then f has to be differentiable there.

Solution: Such an example is given in Example 2 on page 291. The proof that continuity of the partials implying differentiability is the content of Theorem 6.9 on page 292 .
2) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a \boldsymbol{C}^{2} function. Let $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} be points in \mathbb{R}^{3} and define $H(\boldsymbol{x})=\left(\frac{\partial^{2} f}{\partial x_{i} x_{j}}(\boldsymbol{x})\right)_{1 \leq i, j \leq 3}$ for $\boldsymbol{x} \in \mathbb{R}^{3}$. We have the following data: $\nabla f(\boldsymbol{a})=\mathbf{0}, \quad \nabla f(\boldsymbol{b})=\mathbf{0}, \quad \nabla f(\boldsymbol{c})=\mathbf{0}$ and
$H(\boldsymbol{a})=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -13 & 5 \\ 0 & 5 & -2\end{array}\right), \quad H(\boldsymbol{b})=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right), H(\boldsymbol{c})=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 3 & 0 \\ 1 & 0 & 1\end{array}\right)$.
With this much information can you decide which of these points $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} are min/max or saddle points for f ? If so, classify these points accordingly.

Solution: The criteria to make such decisions is given in Theorem 6.22 on page 321 . For the matrix $H=\left(h_{i j}\right)_{1 \leq i, j \leq 3}$ define $H_{1}=h_{11}, H_{2}=$ $h_{11} h_{22}-h_{12} h_{21}$ and $H_{3}=\operatorname{det}(H)$.
For the first matrix we have $H_{1}=-1, H_{2}=13, H_{3}=-1$. Then this is a negative definite matrix and satisfies part (ii) of Theorem 6.22. Thus the point \boldsymbol{a} gives local maximum for f.
The second matrix clearly satisfies the condition (iii) of this theorem so the point \boldsymbol{b} gives a saddle point.
For the third matrix $H_{1}=3, H_{2}=5, H_{3}=2$. This is then a positive definite matrix and satisfies condition (i) of the theorem and thus \boldsymbol{c} gives a local minimum point for f.
3) Consider the functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by
$f(u, v, w)=\left(u^{3}+v^{2}+2 u+2 v+w, u^{7}+v^{6}+w^{8}+u+2 v-w\right)$,
$g(x, y)=\left(x^{5}+x y+y^{3}+x+2 y, x^{5} y^{7}+y^{7}+3 x+4 y, x^{21}+y^{30}+3 x+2 y\right)$. Calculate $D(f \circ g)(0,0)$.

Solution: Note that $g(0,0)=(0,0,0)$. Let $f=\left(f_{1}, f_{2}\right)$ and $g=\left(g_{1}, g_{2}, g_{3}\right)$.

Then

$$
\begin{gathered}
D f(0,0,0)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial u}(0,0,0) & \frac{\partial f_{1}}{\partial v}(0,0,0) & \frac{\partial f_{1}}{\partial w}(0,0,0) \\
\frac{\partial f_{2}}{\partial u}(0,0,0) & \frac{\partial f_{2}}{\partial v}(0,0,0) & \frac{\partial f_{2}}{\partial w}(0,0,0)
\end{array}\right) \\
=\left(\begin{array}{rrr}
2 & 2 & 1 \\
1 & 2 & -1
\end{array}\right)=A
\end{gathered}
$$

and

$$
D g(0,0)=\left(\begin{array}{ll}
\frac{\partial g_{1}}{\partial x}(0,0) & \frac{\partial g_{1}}{\partial y}(0,0) \\
\frac{\partial g_{2}}{\partial x}(0,0) & \frac{\partial g_{2}}{\partial y}(0,0) \\
\frac{\partial g_{3}}{\partial x}(0,0) & \frac{\partial g_{3}}{\partial y}(0,0)
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
3 & 2
\end{array}\right)=B .
$$

Now $D(f \circ g)(0,0)=A B=\left(\begin{array}{rr}11 & 14 \\ 4 & 8\end{array}\right)$.
The theory behind this is in Theorem 6.13 on page 298.
4) Let $F(y)=\int_{0}^{\infty} e^{-x^{2} y^{2}} d x, y \in[1,100]$. Calculate $F^{\prime}(1)$ and justify your answer.
(You may want to be reminded that $\int_{0}^{\infty} e^{-t^{2}} d t=\sqrt{\pi} / 2$)

Solution: First assume that $F^{\prime}(y)$ converges uniformly on $[1,100]$. Then we can apply Theorem 6.6 on page 284 and differentiate under the integral sign:

$$
\begin{gathered}
F^{\prime}(1)=\left.\int_{0}^{\infty}\left(-2 y x^{2} e^{-x^{2} y^{2}}\right)\right|_{y=1} d x \\
=-2 \int_{0}^{\infty} x^{2} e^{-x^{2}} d x \\
=\left.x e^{-x^{2}}\right|_{\substack{x=\infty \\
x=0}}-\int_{0}^{\infty} e^{-x^{2}} d x \\
=-\frac{\sqrt{\pi}}{2}
\end{gathered}
$$

where we used integration by parts with $u=x$ and $d v=x e^{-x^{2}} d x$ for integration and used the hint in the last line.
Now for the justification observe that when $y \in[1,100]$,
$\left|-2 y x^{2} e^{-x^{2} y^{2}}\right|=2\left|y x^{2}\right|\left|e^{-x^{2} y^{2}}\right| \leq 2\left|100 x^{2}\right|\left|e^{-x^{2}}\right|=200 x^{2} e^{-x^{2}}$ And this function is improperly integrable on $[0, \infty)$ as we showed above. Thus by Weierstrass M-Test, on page 283, the integral $F^{\prime}(y)$ converges uniformly. This satisfies the main requirement of Theorem 6.6 on page 284 and differentiation under the integral sign is justified.
5) Prove that there exist functions $u(x, y), v(x, y)$ and $w(x, y)$ and $r>0$ such that u, v, w are continuously differentiable and satisfy the equations

$$
\begin{array}{r}
u^{5}+x v^{2}-y+w=0 \\
v^{5}+y u^{2}-x+w=0 \\
w^{4}+y^{5}-x^{4}=1
\end{array}
$$

on $B_{r}(1,1)$, and $u(1,1)=1, v(1,1)=1, w(1,1)=-1$.

Solution: This is Exercise 5 on page 318, and I solved it in detail in class. Here we basically use the Implicit Function Theorem on page 315.

