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1) Suppose V is open in Rn and f : V → R is continuously differentiable
with ∆f 6= 0 on V . Prove that

lim
r→0

Vol(f(Br(x0)))

Vol(Br(x0))
= |∆f (x0)|

for every x0 ∈ V .

Solution:

Fix an arbitrary x0 ∈ V . Note that Br(x0) is compact, ∆f attains its inf
and sup there, and

Vol(f(Br(x0))) =

∫

f(Br(x0))

du (1)

=

∫

Br(x0)

|∆f (x)| dx (2)

= c Vol(Br(x0)) (3)

= |∆f (x1)| Vol(Br(x0)) (4)

where
(1) follows from Cor. 7.5 (p349),
(2) follows from Thm. 7.14 (p375),
(3) holds for some c between the inf and sup of ∆f on Br(x0), Thm. 7.9 (p354),

(4) holds for some x1 ∈ Br(x0) since |∆f (x)| is continuous there.
Finally taking the limit as r → 0 gives the required result.
Note that this is Exercise 7 on page 382. (The problem would be more mean-
ingful if the range of f is Rn)...!



2) Suppose V is open in Rn and f : V → R is continuous. Prove that if

∫

E

f(x)dx = 0

for all Jordan regions E ⊂ V , then f = 0 on V .

Solution: Assume that there is an x0 ∈ V where f(x0) = 2ε > 0.
Let U = {x ∈ V | f(x) > ε > 0 }. We know that U is not empty since
x0 ∈ U . Since f is continuous, U is open. (U is the preimage of the open
interval (ε,∞)). By continuity of f there is an open ball B2r of radius 2r
around x0, where f is strictly positive. The integral of f on Br is zero by
the assumption of the theorem. (Note that Br is a Jordan region). By the
mean value theorem this is equal to c V ol(Br) for some c between the inf
and sup of f on Br. Since f is continuous on B2r, there is a point x1 ∈ Br

where f(x1) = c, so c 6= 0. But this forces the volume of Br to be zero, a
contradiction. So there is no point where f is strictly positive. Similarly f
cannot take a strictly negative value. So f is identically zero on V .
Note that this is Exercise 9 on page 357.

3) Let S be the surface defined by z = 7
√

x2 + y2, 7 ≤ z ≤ 28. Evaluate
the integral

∫∫

S

F · ~n dσ

where F (x, y, z) = (x2, y(1 − 2x),−z) and ~n is the unit normal vector
pointing outward.

Solution: Evaluating this integral directly requires a lot of tedious work,
so we try using Stokes’ theorem which reduces this integral to an integral
of the boundary. Since the boundary consists of two circles, we expect that
the resulting integral will be easy. But to apply Stokes’ theorem we must
express F as curlG. Since divF = 0, such a G exists, see Theorem 8.6 on
page 450. Set G = (P,Q, R). Trial and error, with some luck, will give you a
G with curlG = F . For example I set Q = 0 and tried to solve the remaining
equalities:
Ry = x2, Pz − Rx = y − 2xy, −Py = −z. This easily yields a solution,
for example G = (yz, 0, yx2). Now Stokes’ theorem says that the required
integral is equal to

∫
∂S

G · T ds.
We now parametrize the boundary ∂S = C1 − C2.
C1: φ(t) = (cos t, sin t, 7), t ∈ [0, 2π],
C2: ψ(t) = (4 cos t, 4 sin t, 28), t ∈ [0, 2π].
G(φ(t)) · φ′(t)dt = −7 sin2 t dt.
G(ψ(t)) · ψ′(t)dt = −448 sin2 t dt.
So we integrate 441 sin2 tdt from 0 to 2π to obtain 441π as the answer.



4) Find the surface area of the cap x2 + y2 + z2 = R2, z ≥ √
R2 − A2, where

R ≥ A ≥ 0.

Solution: We first parametrize the surface:
φ(r, θ) = (r cos θ, r sin θ,

√
R2 − r2), (r, θ) ∈ [0, A]× [0, 2π] = E.

To find the surface area we need to evaluate
∫

E
‖ Nφr×φθ

‖ d(r, θ), see Def-
inition 8.12 on page 424. A straightforward calculation gives ‖ Nφr×φθ

‖=
r (R2/(R2 − r2))

1/2
. Integrating this over E gives 2πR2 − 2πR

√
R2 − A2.

5) (i) Construct a C∞ vector field F : R3\{(0, 0, 0)} → R3 such that F is
not defined at the origin and divF = 0.
(ii) Let E1 be the surface given by x2 + y2 + z2 = 1 and E2 the surface
given by x2/25 + y2/36 + z2/49 = 1. Show that

∫∫

E1

F · ~n1 dσ =

∫∫

E2

F · ~n2 dσ

where F is the vector field you found in the first part, and ~ni is the unit
normal pointing outward of the surface Ei, i = 1, 2.

Solution: The easiest way to construct a vector field F with zero divergence
is to start with a vector field G and set F to be curlG. Since we want F to be
defined everywhere except at the origin we can start with an arbitrary C∞

vector field G which is defined everywhere except at the origin. One such
easy example is G = (log(x2 + y2 + z2), log(x2 + y2 + z2), log(x2 + y2 + z2)).
To prove the second part let the region between these surfaces be denoted
by E. Then use Gauss’ theorem, Theorem 8.4 on page 441, and observe that
the right hand side is zero since divF = 0. This gives, after observing correct
orientations of the surfaces E1 and E2, that the required equality holds.
Note that this is Exercise 10.c on page 454. I solved parts (a) and (b) in
class and promised to ask part (c) in the exam!


