Date: 3 November 2011, Thursday
Time: 08:40-10:30
Ali Sinan Sertöz

NAME: \qquad

STUDENT NO:

\qquad

Math 302 Complex Analysis II - Midterm Exam 1 - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Use the following at your own risk.

$$
\begin{gathered}
\tan z=\sum_{k=1}^{\infty} \frac{\left|B_{2 k}\right| 2^{2 k}\left(2^{2 k}-1\right)}{(2 k)!} z^{2 k-1},|z|<\pi / 2 . \\
\cot z=\frac{1}{z}-\sum_{k=1}^{\infty} \frac{4^{k}\left|B_{2 k}\right|}{(2 k)!} z^{2 k-1}, \quad 0<|z|<\pi . \\
\sec z=\sum_{k=0}^{\infty}(-1)^{k} \frac{E_{2 k}}{(2 k)!} z^{2 k},|z|<\pi / 2 . \\
\operatorname{cosec} z=\frac{1}{z}+\sum_{k=1}^{\infty} \frac{\left(2^{2 k}-2\right)\left|B_{2 k}\right|}{(2 k)!} z^{2 k-1}, 0<|z|<\pi . \\
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, B_{5}=0, B_{6}=\frac{1}{42}, B_{7}=0, B_{8}=-\frac{1}{30} . \\
E_{0}=1, E_{1}=0, E_{2}=-1, E_{3}=0, E_{4}=5, E_{5}=0, E_{6}=-61, E_{7}=0, E_{8}=1385 . \\
\pi \operatorname{coth}(2 \pi)=3.141614565284460456772176 \ldots
\end{gathered}
$$

Q-1) Demonstrate the use of residue theory to find the value of the sum $\sum_{n=2}^{\infty} \frac{1}{n^{2}+4}$.

Solution:

From the theory of utilizing residue theory to infinite sums, we know that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{n^{2}+4}=-\operatorname{Res}\left(\frac{\pi \cot (\pi z)}{z^{2}+4}, z=2 i\right)-\operatorname{Res}\left(\frac{\pi \cot (\pi z)}{z^{2}+4}, z=-2 i\right)
$$

It remains to calculate these residues. Since $\cot (\pi z)$ is analytic at $\pm 2 i$, the residue calculation reduces to evaluation as follows:

$$
\begin{aligned}
\operatorname{Res}\left(\frac{\pi \cot (\pi z)}{z^{2}+4}, z=2 i\right) & =\left.\frac{\pi \cot (\pi z)}{z+2 i}\right|_{z=2 i} \\
& =-\frac{\pi \operatorname{coth}(2 \pi)}{4}=-.7854036418 \ldots \\
\operatorname{Res}\left(\frac{\pi \cot (\pi z)}{z^{2}+4}, z=-2 i\right) & =\left.\frac{\pi \cot (\pi z)}{z-2 i}\right|_{z=-2 i} \\
& =-\frac{\pi \operatorname{coth}(2 \pi)}{4}=-.7854036418 \ldots
\end{aligned}
$$

Putting these into the above formula, we find

$$
\sum_{n=-\infty}^{\infty} \frac{1}{n^{2}+4}=\frac{\pi \operatorname{coth}(2 \pi)}{2}
$$

Finally we have

$$
\begin{aligned}
\sum_{n=2}^{\infty} \frac{1}{n^{2}+4} & =\frac{1}{2}\left(\sum_{n=-\infty}^{\infty} \frac{1}{n^{2}+4}-\frac{1}{4}-\frac{2}{5}\right) \\
& =\frac{1}{2}\left(\frac{\pi \operatorname{coth}(2 \pi)}{2}-\frac{1}{4}-\frac{2}{5}\right) \\
& =\frac{1}{2}\left(\frac{3.141614565}{2}-0.250000000-0.40000000\right) \\
& =.4603836165 \ldots
\end{aligned}
$$

Q-2) For a real number α let $L(\alpha)$ be the line $z(t)=\alpha+i t$ where $t \in \mathbb{R}$. Evaluate the integral

$$
\int_{L(\alpha)} \frac{e^{-z}}{(z-5)^{2}} d z
$$

for all possible values of α.

Solution:

If $\alpha=5$, the integral is not defined since the integrand has a pole along the path.
Let $\alpha<5$. Let I_{R} be the line $L(\alpha)$ for $-R \leq t \leq R$, and let C_{R} be the semicircle of radius R and centered at the point α on the real line, extending towards the right hand side. Choose R large enough so that the pole $z=5$ is inside the closed contour $I_{R}+C_{R}$, traversed counterclockwise. Then

$$
\begin{aligned}
\int_{I_{R}+C_{R}} \frac{e^{-z}}{(z-5)^{2}} d z & =2 \pi i \operatorname{Res}\left(\frac{e^{-z}}{(z-5)^{2}}, z=5\right) \\
& =2 \pi i \frac{-1}{e^{5}} \\
& \approx-0.042 i
\end{aligned}
$$

We further claim that the integral on C_{R} vanishes as R goes to infinity. For thsi note that for $|z-\alpha|=$ R, we have

$$
\left|\frac{e^{-z}}{(z-5)^{2}}\right| \leq \frac{e^{-\alpha}}{(R+5-\alpha)^{2}},
$$

and hence

$$
\left|\int_{C_{R}} \frac{e^{-z}}{(z-5)^{2}} d z\right| \leq(\pi R) \frac{e^{-\alpha}}{(R+5-\alpha)^{2}} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

This shows that

$$
\int_{L(\alpha)} \frac{e^{-z}}{(z-5)^{2}} d z=\lim _{R \rightarrow \infty} \int_{I_{R}+C_{R}} \frac{e^{-z}}{(z-5)^{2}} d z=-0.042 i \ldots
$$

It is now clear that if $\alpha>5$, then the integrand is analytic inside the closed contour $I_{R}+C_{R}$, and hence the integral is zero. The integral on C_{R} again vanishes as R goes to infinity.

Thus we find that

$$
\int_{L(\alpha)} \frac{e^{-z}}{(z-5)^{2}} d z= \begin{cases}-\frac{2 \pi i}{e^{5}} & \text { if } \alpha<5 \\ \text { does not exists } & \text { if } \alpha=5 \\ 0 & \text { if } \alpha>5\end{cases}
$$

Q-3) Classify all the automorphisms f of the unit disk with $f(0)=0$ and $f^{\prime}(0)>0$.

Solution:

All automorphisms of the unit disk are of the form

$$
f(z)=e^{i \theta}\left(\frac{z-\alpha}{1-\bar{\alpha} z}\right)
$$

for some real number θ and where clearly α, with $|\alpha|<1$, is such that $f(\alpha)=0$. In our case $\alpha=0$, so the automorphism becomes

$$
f(z)=e^{i \theta} z
$$

But now $f^{\prime}(z)=e^{i \theta}$ and since $f^{\prime}(0)>0$, we must have $e^{i \theta}=1$, forcing $f(z)=z$.
Hence the only such automorphism of the unit disk is the identity.

Q-4) Let R be an open, non-empty subset of the complex plane. Assume that there exists a conformal mapping f of R onto the unit disk U. Choose any $z_{0} \in R$. Prove or disprove that there exists a conformal mapping g from R onto U such that $g\left(z_{0}\right)=0$ and $g^{\prime}\left(z_{0}\right)>0$.

Solution:

We prove the statement.
Let

$$
g(z)=e^{i \theta}\left(\frac{f(z)-f\left(z_{0}\right)}{1-\overline{f\left(z_{0}\right)} f(z)}\right)
$$

for some real θ. Here g is obtained by composing f with an automorphism of the unit disk sending $f\left(z_{0}\right)$ to zero.

We calculate and find that

$$
g^{\prime}\left(z_{0}\right)=\frac{f^{\prime}\left(z_{0}\right) e^{i \theta}}{1-\left|f\left(z_{0}\right)\right|^{2}}
$$

To make $g^{\prime}\left(z_{0}\right)>0$, all we need to do is to choose $\theta=-\operatorname{Arg} f^{\prime}\left(z_{0}\right)$.

Q-5) Let H be the upper half plane. Suppose that we have a function f analytic on H and continuous on \bar{H}, where \bar{H} denotes the closure of H. Assume further that $|f(z)|$ is bounded on \bar{H}. Let $M=\sup \{|f(z)| \mid z \in \mathbb{R}\}$

Prove or disprove that $|f(z)| \leq M$ for all $z \in H$.

Solution:

We prove the statement.
If f is constant, there is nothing to prove. Assume then that f is not constant and hence $M>0$.
Dividing f by M if necessary, we may assume without loss of generality that $M=1$. Assume that K is an upper bound for $|f(z)|$ for $z \in \bar{H}$.

Fix any $z_{0} \in H$. We claim that $\left|f\left(z_{0}\right)\right| \leq 1$.
For this purpose, consider the function

$$
h(z)=\frac{f^{n}(z)}{z+i},
$$

where n is a positive integer to be determined later. Clearly $|h(z)| \leq 1$ for all real z. Moreover for all $z \in H$ with $|z|=R>1$, we have $|h(z)| \leq K^{n} /(R-1)$. Choose R large enough such that $K^{n} /(R-1)<1$ and $R>\left|z_{0}\right|$. Consider the set

$$
D_{R}=\{z \in H| | z \mid \leq R\} .
$$

We showed above that $|h(z)| \leq 1$ on the boundary of \bar{D}_{R}, so by maximum modulus principle, $\left|h\left(z_{0}\right)\right| \leq 1$.

Hence for each $z_{0} \in H$, we have

$$
\left|h\left(z_{0}\right)\right|=\left|\frac{f^{n}\left(z_{0}\right)}{z_{0}+i}\right| \leq 1 \quad \text { or } \quad\left|f\left(z_{0}\right)\right| \leq\left|z_{0}+i\right|^{1 / n} .
$$

Taking n large enough, we can get

$$
\left|f\left(z_{0}\right)\right| \leq 1 \text { for all } z_{0} \in H
$$

which proves the claim and finishes the solution of the problem.

