\qquad
\qquad

Math 302 Complex Analysis II - Homework 2 - Solutions

1	2	3	4	TOTAL
10	10	10	10	40

Please do not write anything inside the above boxes!
Check that there are 3 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let L be a line in the complex plane and let T be a Mobius transformation sending L again to a line. Classify all such T.

Solution:

There are two cases. Either $T(\infty)=\infty$, or $T(\infty) \in \mathbb{C}$.
If $T(\infty)=\infty$, then clearly T is linear.
If, on the other hand, $T(\infty)=w_{0} \in \mathbb{C}$, then there must exist a $z_{0} \in L \subset \mathbb{C}$ such that $T\left(z_{0}\right)=\infty$. Then we must have

$$
T(z)=w_{0}+\frac{w}{z-z_{0}},
$$

for some $w \in \mathbb{C}$. Let $z_{1} \in \mathbb{C}$ be a point on L other than z_{0}, and let $T\left(z_{1}\right)=w_{1} \in T(L)$. Then

$$
T(z)=w_{0}+\frac{\left(z_{1}-z_{0}\right)\left(w_{1}-w_{0}\right)}{z-z_{0}} .
$$

Any point on L is of the form $z_{0}+t\left(z_{1}-z_{0}\right)$ where $t \in \mathbb{R}$. Check that

$$
T\left(z_{0}+t\left(z_{1}-z_{0}\right)\right)=w_{0}+\frac{1}{t}\left(w_{1}-w_{0}\right) .
$$

So the image is the line through w_{0} and w_{1}.
Conclusion:
If $T(\infty)=\infty$, then let z_{0} and z_{1} be two different points on L. Let $w_{0}=T\left(z_{0}\right)$ and $w_{1}=T\left(z_{1}\right)$. Then

$$
T(z)=\frac{w_{1}-w_{0}}{z_{1}-z_{0}}\left(z-z_{0}\right)+w_{0}
$$

If $T(\infty)=w_{0} \in \mathbb{C}$, then let $z_{0} \in L$ be such that $T\left(z_{0}\right)=\infty$. Choose any point $z_{1} \in \mathbb{C}$ on L different than z_{0} and set $w_{1}=T\left(z_{1}\right)$. Then

$$
T(z)=w_{0}+\frac{\left(z_{1}-z_{0}\right)\left(w_{1}-w_{0}\right)}{z-z_{0}} .
$$

Another solution which I learned from your papers is the following.

Any Mobius transformation is of the form $T(z)=\frac{a z+b}{c z+d}$. If $c=0$, then T is linear and sends L to a line. If $c \neq 0$, then $T(z)=\left(f_{3} \circ f_{2} \circ f_{1}\right)(z)$ where

$$
f_{1}(z)=c z+d, \quad f_{2}(z)=\frac{1}{z}, \quad f_{3}(z)=\frac{a}{c}-\left(\frac{a d-b c}{c}\right) z .
$$

Here f_{1} and f_{3} are linear and take lines to lines. But f_{2} takes only those lines through the origin to lines. If we want T to send L to a line, then there must exist a point $z \in \mathbb{C}$ on L such that $c z+d=0$.

Conclusion: The Mobius transformations sending L to a line are of the following form.

$$
\left\{\left.\frac{a z+b}{c z+d} \right\rvert\, a d-b c \neq 0 \text { and }-\frac{d}{c} \in L\right\}
$$

Note that when $c=0$, we can interpret $-d / c$ as infinity which is certainly on L and hence this description also covers the linear transformations.

Q-2) Let T be the Mobius transformation with $T(i \sqrt{3})=\infty, T(-i \sqrt{3})=0$, and $T(0)=-1$. Find the image under T of the region R which is the intersection of the discs $|z+1| \leq 2$ and $|z-1| \leq 2$.

Solution:

First of all note that T is uniquely defined with the given data, and

$$
T(z)=\frac{z+i \sqrt{3}}{z-i \sqrt{3}}
$$

The points $A=i \sqrt{3}$ and $B=-i \sqrt{3}$ are the intersection points of the circles $|z+1|=2$ and $|z-1|=2$. The point A is send to infinity so the two circles are send to the two lines which intersect at 0 with the same angle as the circles intersect at B.

The circle $|z-1|=2$ is sent to the line $y=\sqrt{3} x$, and the circle $|z+1|=2$ is sent to the line $y=-\sqrt{3} x$. The region R is sent to one of the four regions defined by these lines. Since $T(0)=-1$, the region R is sent to the region that contains -1 .

Q-3) Let R be a connected, simply connected, non-empty, proper open subset of \mathbb{C}. Fix a point $z_{0} \in R$. Let \mathcal{F} be the set of all analytic injective functions f from R into the unit disc U with $f\left(z_{0}\right)=0$. Assume that \mathcal{F} is not empty. Take an $f \in \mathcal{F}$. Show that if f is not surjective, then there is some $g \in \mathcal{F}$ such that $\left|g^{\prime}\left(z_{0}\right)\right|>\left|f^{\prime}\left(z_{0}\right)\right|$.

Solution:

Since f is not surjective, it misses a point $w \in U$. For any point $p \in U$ define

$$
T_{p}(z)=\frac{z-p}{1-\bar{p} z} .
$$

Define a branch of logarithm, and hence a branch of the square-root function on the simply connected region $T_{w}(f(R))$. Let $w^{\prime}=\sqrt{-w}$. Define a function $g: R \rightarrow U$ as

$$
g(z)=T_{w^{\prime}}\left(\sqrt{T_{w}(f(z))}\right) .
$$

We then have

$$
f(z)=T_{w}^{-1}\left(\left(T_{w^{\prime}}^{-1}(g(z))\right)^{2}\right) .
$$

Notice that the map

$$
s(z)=T_{w}^{-1}\left(\left(T_{w^{\prime}}^{-1}(z)\right)^{2}\right)
$$

is an automorphism of the unit disc fixing zero,and it is not an isomorphism because of the square function involved. Therefore by Schwarz Lemma (Lemma 7.2 in our textbook), we must have $\left|s^{\prime}(0)\right|<1$.

Finally, since $f=s \circ g$, using chain rule we get

$$
\left|f^{\prime}\left(z_{0}\right)\right|=\left|s^{\prime}(0)\right|\left|g^{\prime}\left(z_{0}\right)\right|<\left|g^{\prime}\left(z_{0}\right)\right| .
$$

Check that $g \in \mathcal{F}$. This completes the proof.
(This is taken from: http://people.reed.edu/ jerry/311/rmt.pdf)

Q-4) Suppose f is an entire function and there is some $R>0$ and $z_{0} \in \mathbb{C}$ such that the open ball $B_{R}\left(z_{0}\right)$ with radius R centered at z_{0} is not in the range of f, i.e. $B_{R}\left(z_{0}\right) \cap f(\mathbb{C})=\emptyset$. Show that f is constant. (In fact if the complement of $f(\mathbb{C})$ contains at least two distinct points, let alone a whole disc, then f is constant. That is Picard's theorem but you must demonstrate a proof for this homework problem only using Liouville's theorem.)

Solution:

The function $g(z)=\frac{1}{f(z)-z_{0}}$ is entire and $|g(z)|=\frac{1}{\left|f(z)-z_{0}\right|}<\frac{1}{R}$, so g is constant. Hence f must be constant too.

