\qquad
\qquad

Math 302 Complex Analysis II - Homework 3 - Solutions

1	2	3	4	TOTAL
10	10	10	10	40

Please do not write anything inside the above boxes!
Check that there are 3 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let f be an entire function and suppose that there is a positive integer n and positive real numbers A and R such that for all $z \in \mathbb{C}$ with $|z| \geq R$, we have $|f(z)| \leq A|z|^{n}$. Use Cauchy Integral Formula to show that f is a polynomial of degree at most n.

Solution:

For any $z_{0} \in \mathbb{C}$ and for any $R_{0}>0$, the Cauchy Integral Formula, in generalized form, gives

$$
f^{(n+1)}\left(z_{0}\right)=\frac{(n+1)!}{2 \pi i} \int_{\left|z-z_{0}\right|=R_{0}} \frac{f(z)}{\left(z-z_{0}\right)^{n+2}} d z
$$

Let

$$
C_{R_{0}}=\left\{z \in \mathbb{C}| | z-z_{0} \mid=R_{0}\right\} .
$$

Fix any $z_{0} \in \mathbb{C}$. Choose any $R_{0}>\left|z_{0}\right|+R$. This choice of R_{0} guarantees that for all $z \in C_{R_{0}}$ we have $R<|z| \leq\left|z_{0}\right|+R$. Hence in this case for all $z \in C_{R_{0}}$, we have $|f(z)|<A\left(\left|z_{0}\right|+R_{0}\right)^{n}$. Putting this into the Cauchy Integral Formula, we get

$$
\left|f^{(n+1)}\left(z_{0}\right)\right| \leq \frac{(n+1)!R_{0}\left(\left|z_{0}\right|+R_{0}\right)^{n}}{R_{0}^{n+2}}
$$

The left hand side is independent of R_{0}. The right hand side holds for all $R_{0}>\left|z_{0}\right|+R$, and goes to zero as R_{0} goes to infinity. This forces the left hand side to be zero to begin with. Hence $f^{(n+1)}\left(z_{0}\right)=0$ for all $z_{0} \in \mathbb{C}$, and consequently f is a polynomial of degree at most n.

Q-2) Let $f=u+i v$ be an entire function. Theorem 16.10 says that if $|u(z)| \leq A|z|^{n}$ for all sufficiently large z, and for some constant $A>0$ and for some non-negative integer n, then f is a polynomial of degree at most n. The proof uses Theorem 16.9 which says that if f is \mathbf{C}-analytic in $D(0, R)$, for some $R>0$, then

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(R e^{i \theta}\right) \frac{R e^{i \theta}+z}{R e^{i \theta}-z} d \theta+i v(0) .
$$

Assuming that differentiation with respect to z can be carried inside the integral sign for all orders, give an alternate proof of Theorem 16.10 by showing that $f^{(n+1)}\left(z_{0}\right)=0$ for all $z_{0} \in \mathbb{C}$.

Solution:

Fix any $z_{0} \in \mathbb{C}$ and choose any $R>2\left|z_{0}\right|$. Then $\left|R e^{i \theta}-z_{0}\right| \geq R-\left|z_{0}\right|>R-R / 2=R / 2$, and moreover

$$
f^{(n+1)}\left(z_{0}\right)=\frac{R}{\pi} \int_{0}^{2 \pi} u\left(R^{i \theta}\right) \frac{e^{i \theta} n!}{\left(R e^{i \theta}-z_{0}\right)^{n+2}} d \theta .
$$

It then follows that

$$
\left|f^{(n+1)}\left(z_{0}\right)\right| \leq \frac{n!2^{n+2} A}{\pi} \frac{1}{R},
$$

for all $R>2\left|z_{0}\right|$. This can only happen when $f^{(n+1)}\left(z_{0}\right)=0$.

Q-3) Let $u(x, y)$ and $v(x, y)$ be harmonic functions on a region D in \mathbb{C}. Find conditions on u and v such that $u v$ is harmonic on D. Show that these conditions hold if $u+i v$ is analytic on D. Show however that when $u v$ is harmonic, it does not necessarily imply that $u+i v$ is analytic on D.

Solution:

Let Δ be the laplace operator. Then $\Delta(u v)=\Delta u+\Delta v+2\left(u_{x} v_{x}+u_{y} v_{y}\right)$.
It follows that when u and v are harmonic, $u v$ will be harmonic if and only if $u_{x} v_{x}+u_{y} v_{y}=0$. When $u+i v$ is analytic, the Cauchy-Riemann equations on u and v forces $u_{x} v_{x}+u_{y} v_{y}=0$ but it is not sufficient. For example if $u=x, v=-y$, then $u v$ is harmonic in the plane but $x-i y$ is not analytic anywhere.

Q-4) Find the Weierstrass product form of the entire function $\sinh z$.

Solution:

$$
\sinh z=z \prod_{k=1}^{\infty}\left(1+\frac{z^{2}}{k^{2} \pi^{2}}\right) .
$$

We can obtain this directly from the Weierstrass product form of $\sin z$ as follows:

$$
\sinh z=-i \sin i z=(-i)(i z) \prod_{k=1}^{\infty}\left(1-\frac{(i z)^{2}}{k^{2} \pi^{2}}\right)=z \prod_{k=1}^{\infty}\left(1+\frac{z^{2}}{k^{2} \pi^{2}}\right)
$$

It is also a good exercise to construct the function $z \prod_{k=1}^{\infty}\left(1+\frac{z^{2}}{k^{2} \pi^{2}}\right)$ which vanishes only at the zeros of $\sinh z$ and then following the standard arguments of the book to show that it is actually equal to $\sinh z$.

