\qquad
\qquad

Math 302 Complex Analysis II - Homework 4 - Solutions

1	2	3	4	TOTAL
10	10	10	10	40

Please do not write anything inside the above boxes!
Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let f be an entire function of finite order with finitely many zeros. Show that either $f(z)$ is a polynomial or $f(z)+z$ has infinitely many zeros.

Solution:

If $f(z)$ is a polynomial, then we are done. If $f(z)$ is not a polynomial, then we know that $f(z)=$ $P(z) e^{Q(z)}$ where P and Q are polynomials and $Q(z)$ is not constant. Suppose that $g(z)=f(z)+z$ has finitely many zeros. Since g is entire and is of finite order, it must be of the form

$$
g(z)=R(z) e^{S(z)}
$$

where R and S are polynomials. This give the equality

$$
\begin{equation*}
z+P(z) e^{Q(z)}=R(z) e^{S(z)} \tag{*}
\end{equation*}
$$

Taking the second derivatives of both sides and rearranging we obtain an equality of the form

$$
P_{0}(z) e^{Q(z)}=R_{0}(z) e^{S(z)}
$$

where $P_{0}(z)$ and $R_{0}(z)$ are polynomials. This gives

$$
e^{Q(z)-S(z)}=\frac{R_{0}(z)}{P_{0}(z)}
$$

Since the LHS has neither zeros nor poles, the RHS being a rational function of z must be constant. This implies in particular that $S(z)=Q(z)+c_{0}$, where $c_{0} \in \mathbb{C}$ is a constant. Putting this into equation (*), we get

$$
e^{Q(z)}=\frac{z}{R(z) e^{c_{0}}-P(z)}
$$

A similar argument as above forces $Q(z)$ to be a constant, which is a contradiction.
Hence $f(z)+z$ must have infinitely many zeros.

Q-2) Show that $\Gamma(z)=\lim _{n \rightarrow \infty} \int_{0}^{n} t^{z-1}\left(1-\frac{t}{n}\right)^{n} d t$.

Solution:

This is an Exercise in Chapter 18, with hints on the back of the book. Here are the main steps involved in the solution.

From the Taylor expansion of e^{x} we first get

$$
\begin{equation*}
e^{-t / n}-\left(1-\frac{t}{n}\right)=\frac{t^{2}}{2!n^{2}}-\frac{t^{3}}{3!n^{3}}+\cdots \leq \frac{t^{2}}{2!n^{2}} \tag{1}
\end{equation*}
$$

when $t<n$. Next we observe that when $0<b<a$, we have for any positive integer n,

$$
\begin{equation*}
a^{n}-b^{n}=(a-b)\left(a^{n-1}+\cdots+a^{n-k-1} b^{k}+\cdots+b^{n-1}\right) \leq(a-b) n a^{n-1} . \tag{2}
\end{equation*}
$$

Setting $a=e^{-t / n}, b=(1-t / n)$, and noting that in this case $0<b<a$ holds for any positive integer n, we get

$$
e^{-t}-\left(1-\frac{t}{n}\right)^{n} \leq\left(e^{-t / n}-\left(1-\frac{t}{n}\right)\right) n e^{-(t / n)(n-1)} \leq \frac{t^{2} e^{-t} e}{2 n}
$$

where in the last step we combined the inequalities (1) and (2), and used the fact that $e^{t / n}<e$ when $t<n$. Finally we check that

$$
\left|\int_{0}^{n} t^{z-1} e^{-t} d t-\int_{0}^{n} t^{z-1}\left(1-\frac{t}{n}\right) d t\right| \leq \int_{0}^{n} t^{x-1}\left[e^{-t}-\left(1-\frac{t}{n}\right)\right] d t
$$

where $z=x+i y$ and $x>0$. We then have

$$
\int_{0}^{n} t^{x-1}\left[e^{-t}-\left(1-\frac{t}{n}\right)\right] d t \leq \frac{e}{2 n} \int_{0}^{n} t^{(x+2)-1} e^{-t} d t \leq \frac{e}{2 n} \Gamma(x+2)
$$

We note that the last term tends to zero as n tends to infinity, thus showing the required identity.

STUDENT NO:

Q-3) Assume that $\sum_{k=1}^{\infty} z_{k}$ and $\sum_{k=1}^{\infty}\left|z_{k}\right|^{2}$ converge. Show that $\prod_{k=1}^{\infty}\left(1+z_{k}\right)$ converges.

Solution:

This is an Exercise of Chapter 17, with hints at the back of the book.
We have

$$
\left|\log \left(1+z_{k}\right)-z_{k}\right| \leq \frac{\left|z_{k}\right|^{2}}{2}+\frac{\left|z_{k}\right|^{3}}{3}+\cdots \leq\left|z_{k}\right|^{2}
$$

when $\left|z_{k}\right| \leq 1 / 2$. So $\sum\left(\log \left(1+z_{k}\right)-z_{k}\right)$ converges (absolutely) when $\sum_{k=1}^{\infty}\left|z_{k}\right|^{2}$ converges. Since $\sum_{k=1}^{\infty}\left|z_{k}\right|$ also converges, $\sum \log \left(1+z_{k}\right)$ converges, which in turn implies that $\prod_{k=1}^{\infty}\left(1+z_{k}\right)$ converges.

Q-4) Show that $\sum_{p \text { prime }} \frac{1}{p}$ diverges.

Solution:

We have

$$
\zeta(z) \prod_{p \text { prime }}\left(1-\frac{1}{p^{z}}\right)=1, \Re z>1
$$

Since $\lim _{z \rightarrow 1} \zeta(z)=\infty$, we must have $\prod_{p \text { prime }}\left(1-\frac{1}{p}\right)$ diverge to zero. Since $\sum 1 / p^{2}$ converges, we must have $\sum 1 / p$ diverge, which follows from the previous problem.

