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Math 302 Complex Analysis II – Homework 4 – Solutions
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Please do not write anything inside the above boxes!

Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in
reasonable detail. A correct answer without proper or too much reasoning may not get any credit.



NAME: STUDENT NO:

Q-1) Let f be an entire function of finite order with finitely many zeros. Show that either f(z) is a
polynomial or f(z) + z has infinitely many zeros.

Solution:

If f(z) is a polynomial, then we are done. If f(z) is not a polynomial, then we know that f(z) =
P (z)eQ(z) where P and Q are polynomials and Q(z) is not constant. Suppose that g(z) = f(z) + z
has finitely many zeros. Since g is entire and is of finite order, it must be of the form

g(z) = R(z)eS(z),

where R and S are polynomials. This give the equality

z + P (z)eQ(z) = R(z)eS(z). (∗)

Taking the second derivatives of both sides and rearranging we obtain an equality of the form

P0(z)eQ(z) = R0(z)eS(z),

where P0(z) and R0(z) are polynomials. This gives

eQ(z)−S(z) =
R0(z)

P0(z)
.

Since the LHS has neither zeros nor poles, the RHS being a rational function of z must be constant.
This implies in particular that S(z) = Q(z)+c0, where c0 ∈ C is a constant. Putting this into equation
(∗), we get

eQ(z) =
z

R(z)ec0 − P (z)
.

A similar argument as above forces Q(z) to be a constant, which is a contradiction.

Hence f(z) + z must have infinitely many zeros.
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Q-2) Show that Γ(z) = lim
n→∞

∫ n

0

tz−1
(

1− t

n

)n

dt.

Solution:

This is an Exercise in Chapter 18, with hints on the back of the book. Here are the main steps involved
in the solution.

From the Taylor expansion of ex we first get

e−t/n − (1− t

n
) =

t2

2!n2
− t3

3!n3
+ · · · ≤ t2

2!n2
, (1)

when t < n. Next we observe that when 0 < b < a, we have for any positive integer n,

an − bn = (a− b)(an−1 + · · ·+ an−k−1bk + · · ·+ bn−1) ≤ (a− b)n an−1. (2)

Setting a = e−t/n, b = (1− t/n), and noting that in this case 0 < b < a holds for any positive integer
n, we get

e−t −
(

1− t

n

)n

≤
(
e−t/n − (1− t

n
)

)
n e−(t/n)(n−1) ≤ t2e−te

2n
,

where in the last step we combined the inequalities (1) and (2), and used the fact that et/n < e when
t < n. Finally we check that∣∣∣∣∫ n

0

tz−1e−t dt−
∫ n

0

tz−1
(

1− t

n

)
dt

∣∣∣∣ ≤ ∫ n

0

tx−1
[
e−t −

(
1− t

n

)]
dt,

where z = x+ iy and x > 0. We then have∫ n

0

tx−1
[
e−t −

(
1− t

n

)]
dt ≤ e

2n

∫ n

0

t(x+2)−1e−t dt ≤ e

2n
Γ(x+ 2).

We note that the last term tends to zero as n tends to infinity, thus showing the required identity.
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Q-3) Assume that
∞∑
k=1

zk and
∞∑
k=1

|zk|2 converge. Show that
∞∏
k=1

(1 + zk) converges.

Solution:

This is an Exercise of Chapter 17, with hints at the back of the book.

We have

| log(1 + zk)− zk| ≤
|zk|2

2
+
|zk|3

3
+ · · · ≤ |zk|2

when |zk| ≤ 1/2. So
∑

(log(1 + zk)− zk) converges (absolutely) when
∑∞

k=1 |zk|2 converges. Since∑∞
k=1 |zk| also converges,

∑
log(1 + zk) converges, which in turn implies that

∞∏
k=1

(1 + zk) converges.
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Q-4) Show that
∑
p prime

1

p
diverges.

Solution:

We have

ζ(z)
∏

p prime

(
1− 1

pz

)
= 1, <z > 1.

Since lim
z→1

ζ(z) = ∞, we must have
∏

p prime

(
1− 1

p

)
diverge to zero. Since

∑
1/p2 converges, we

must have
∑

1/p diverge, which follows from the previous problem.


