Math 430/505 Complex Geometry - Assignments

1) Let e_{1}, e_{2} be the standard real basis of \mathbb{C}. Show that the usual almost complex structure on \mathbb{C} is given by the endomorphism $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

Let $A=\left(\begin{array}{cc}4 & 17 \\ -1 & -4\end{array}\right)$ be an endomorphism on \mathbb{R}^{2}. Check that A defines an almost complex structure on \mathbb{R}^{2}. Find a basis f_{1}, f_{2} of \mathbb{R}^{2} such that with respect to this basis, the matrix of the endomorphism A is $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an invertible endomorphism of \mathbb{R}^{2}. Find necessary and sufficient conditions on a, b, c, d such that A is an almost complex structure on \mathbb{R}^{2}. Find a basis u, v of \mathbb{R}^{2} such that the matrix of A with respect to this basis is $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
2) Show that any $w \in V^{1,0}$ is of the form $w=u-i J(u)$ for some $u \in V$ where J is the almost complex structure on V.
3) Let M be a complex manifold and N a complex submanifold of dimensions m and n respectively. Show that for every $x \in N$ there exists an open set $U \subset M$ and a coordinate chart z_{1}, \ldots, z_{m} on U for M such that

$$
N \cap U=\left\{p \in U \mid z_{n+1}(p)=\cdots=z_{m}(p)=0\right\}
$$

4) Let V be a finite dimensional real vector space with an almost complex structure J, and let ϕ : $V \longrightarrow V$ be an automorphism commuting with the almost complex structure. Show that $\operatorname{det} \phi>0$. Show that an almost complex structure defines a canonical orientation on V. Use this to show that a complex manifold is naturally oriented.
5) Let V be a real vector space of dimension 2 with a fixed orientation. Let \langle,$\rangle be positive definite$ symmetric bilinear form on V. Construct an almost complex structure J on V compatible with the given scalar product. Conversely, let an almost complex structure J be given. Construct a positive definite symmetric bilinear form \langle,$\rangle on V$ with which J is compatible. Speculate what may happen in higher dimensions.
6) Let $\alpha \in \bigwedge^{k} V_{\mathbb{C}}^{*}$ and $v_{1}, \ldots, v_{k} \in V_{\mathbb{C}}$. Prove the statement

$$
\mathbb{I}(\alpha)\left(v_{1}, \ldots, v_{k}\right)=\alpha\left(\mathbb{I}\left(v_{1}\right), \ldots, \mathbb{I}\left(v_{k}\right)\right)
$$

(see class notes for the notation.) Then use this to show explicitly that the associated fundamental form ω, of a finite dimensional vector space V with a positive definite symmetric bilinear form on it and a compatible almost complex structure J, is in $\bigwedge^{1,1} V^{*}$.
7) Prove the chain rule in the complex setting. Let $z=x+i y$ and $w=u+i v$. Let $f=f(w)$ and $w=g(z)$. Show that

$$
\frac{\partial f}{\partial z}=\frac{\partial f}{\partial w} \frac{\partial w}{\partial z}+\frac{\partial f}{\partial \bar{w}} \frac{\partial \bar{w}}{\partial z}
$$

where as usual $\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)$ etc.

