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preparing this submitted work. Every solution I wrote reflects my true understanding of the problem.
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NAME: STUDENT NO:

Q-1) Prove the Cauchy Integral Formula for smooth functions on an annulus. That is, show that

f(z) =
1

2πi

∫
∂Ar

f(w)

w − z
dw +

1

2πi

∫
Ar

∂f(w)

∂w̄

dw ∧ dw̄
w − z

, for all z ∈ Ar,

where 0 < r < 1, Ar = {z ∈ C | r < |z| < 1} and f ∈ C∞(Ār).
Also show how this formula reduces to the usual one when f is C∞ in the closed unit disk.

Solution:

Consider the differential form

η =
1

2πi

f(w)

w − z
dw.

For w 6= z, we have
∂

∂w̄

(
1

w − z

)
= 0, so

dη = − 1

2πi

∂f(w)

∂w̄

dw ∧ dw̄
w − z

.

Let ∆ε = ∆(z, ε) be an open disc of radius ε > 0 around z totally lying in Ar. The form η is C∞ in
Ar \∆ε.

By Stokes’ theorem we have∫
Ar\∆ε

dη =

∫
∂(Ar\∆ε)

η =

∫
∂Ar

η −
∫
∂∆ε

η.

Equivalently we get ∫
∂∆ε

η =

∫
∂Ar

η −
∫
Ar\∆ε

dη (A)

or ∫
∂∆ε

η =

∫
∂Ar

η −
∫
Ar

dη +

∫
∆ε

dη. (B)

We now investigate the integrals which involve ε separately.

(1) Set w − z = reiθ. Here r is the variable in polar coordinates, not the fixed radius of the annulus
Ar. Using this we get ∫

∂∆ε

η =
1

2πi

∫
∂∆ε

f(w)

w − z
dw =

1

2π

∫ 2π

0

f(z + εeiθ) dθ,

which goes to f(z) when ε→ 0.



(2) Since
∂f(w)

∂w̄
is continuous on Ār, its absolute value is bounded there, say by a real number c > 0.

After passing to polar coordinates as above we then have

|dη| = 1

2π

∣∣∣∣∂f(w)

∂w̄

dw ∧ dw̄
w − z

∣∣∣∣ =
1

π

∣∣∣∣∂f(w)

∂w̄
dr ∧ dθ

∣∣∣∣ ≤ c

π
|dr ∧ dθ|,

which gives ∣∣∣∣∫
∆ε

dη

∣∣∣∣ ≤ c

π

∫
∆ε

|dr ∧ dθ| = 2cε,

which in turn goes to zero as ε goes to zero.

Now from equation (B), by taking limit as ε goes to zero of both sides, we get

f(z) =

∫
∂Ar

η −
∫
Ar

dη,

which is precisely the formula we set out to prove.

Now assume that f is C∞ on the closure of the unit disc ∆. Let ∆r denote the open disc around the
origin with radius r. We then have the obvious relations

∂Ar = ∂∆ \ ∂∆r, Ar \∆ε = (∆ \∆ε) \ ∆̄r, and ∂∆̄r = ∂∆r,

where ∆̄r denotes the closure.

Now starting with equation (A) we have∫
∂∆ε

η =

∫
∂Ar

η −
∫
Ar\∆ε

dη

=

∫
∂∆

η −
∫
∂∆r

η −
∫

∆\∆ε

dη +

∫
∆̄r

dη

=

∫
∂∆

η −
∫
∂∆r

η −
∫

∆\∆ε

dη +

∫
∂∆r

η

=

∫
∂∆

η −
∫

∆\∆ε

dη,

where in the third line we used Stokes’ theorem∫
∆̄r

dη =

∫
∂∆r

dη.

Now the above arguments, applied verbatim, give

f(z) =

∫
∂∆

η −
∫

∆

dη,



which is the usual Cauchy Integral Formula (CIF) for smooth f on the closed unit disk.

Remark: Notice that in the above discussion, the outer radius of Ar was not involved in any way
during the proof. This prompts the following corollary which we will use in the next question.

Corollary: For any 0 < r < R, define the annulus

Br,R = {z ∈ C | r < |z| < R}.

Then for any f ∈ C∞(B̄r,R), we have

f(z) =
1

2πi

∫
∂Br,R

f(w)

w − z
dw +

1

2πi

∫
Br,R

∂f(w)

∂w̄

dw ∧ dw̄
w − z

, for all z ∈ Br,R.



NAME: STUDENT NO:

Q-2) Prove the ∂̄-Poincare lemma for the punctured disk. That is, for any g ∈ C∞(∆∗), there exists an
f ∈ C∞(∆∗) such that

∂f(z)

∂z̄
= g(z), for z ∈ ∆∗,

where
∆∗ = {z ∈ C | 0 < |z| < 1}.

Solution:

We first prove the ∂̄-Poincare Lemma for the annulus Br,R: For every g(z) ∈ C∞(B̄r,R), the function

f(z) =
1

2πi

∫
Br,R

g(w)

w − z
dw ∧ dw̄

is defined and C∞ in Br,R and satisfies
∂f

∂z̄
= g.

The proof of this claim follows almost verbatim the proof given for ∆ in Griffiths and Harris on
page 5.

For every z0 ∈ Br,R choose ε > 0 such that the disc ∆(z0, 2ε) lies in Br,R. Consider a covering of
Br,R by the open sets ∆(z0, ε). We will show that the above claim holds on every ∆(z0, ε).

Fix one ∆(z0, ε). Let U1 = ∆(z0, 2ε) and U2 = Ar \∆(z0, ε). Let ρ1(z) + ρ2(z) = 1 be a partition
of unity subordinate to the open covering Ar = U1 ∪ U2 with the support of ρi being in Ui. Define
gi = ρig. Then we have

g(z) = g1(z) + g2(z),

with g1(z) vanishing outside ∆(z0, 2ε) and g2(z) vanishing inside ∆(z0, ε).

For every w ∈ Br,R, the function
g2(w)

w − z
is a holomorphic function of z for z ∈ ∆(z0, ε). In particular

∂

∂z̄

g2(w)

w − z
= 0 on ∆(z0, ε). If we now define

f2(z) =
1

2πi

∫
Br,R

g2(w)
dw ∧ dw̄
w − z

, for z ∈ ∆(z0, ε),

then the above arguments show that f2 is well defined and in fact holomorphic. Hence
∂f2(z)

∂z̄
= 0.

Now define
f1(z) =

1

2πi

∫
Br,R

g1(w)
dw ∧ dw̄
w − z

, for z ∈ ∆(z0, ε).



We will show that f1(z) is well defined and C∞ in Br,R, and that moreover satisfies
∂f1(z)

∂z̄
= g1(z)

for z ∈ ∆(z0, ε).

For this note that g1 vanishes outside ∆(z0, 2ε), so we can replace Br,R in the integral with C without
changing the value of f1(z). Next substitute u = w − z in the integral to obtain

f1(z) =
1

2πi

∫
C
g1(u+ z)

du ∧ dū
u

.

Putting u = x+ iy, we get

du ∧ dū = (dx+ idy) ∧ (dx− idy) = −2idx ∧ dy = −2irdr ∧ dθ,

where in the last equation we passed to polar coordinates. Note that this r is the parameter in polar
coordinates and is not the inner radius of Br,R. We can now write

f1(z) = − 1

π

∫
C
g1(z + reiθ)e−iθdr ∧ dθ,

which is now clearly defined and C∞ on ∆(z0, ε). Moreover we have

∂f1(z)

∂z̄
= − 1

π

∫
C

∂g1(z + reiθ)

∂z̄
e−iθdr ∧ dθ.

Putting back all the substitutions we made, we get

∂f1(z)

∂z̄
=

1

2πi

∫
Br,R

g1(w)

∂w̄

dw ∧ dw̄
w − z

.

On the other hand, since g1(w) vanishes outside of ∆(z0, ε), we clearly have

1

2πi

∫
∂Br,R

g1(w)

w − z
dw = 0.

We then have

∂f1(z)

∂z̄
=

1

2πi

∫
∂Br,R

g1(w)

w − z
dw +

1

2πi

∫
Br,R

g1(w)

∂w̄

dw ∧ dw̄
w − z

= g1(z),

where in the last equation we used the generalized version of CIF for Br,R, which we proved as a
corollary at the end of question 1.

Finally, we have

f(z)

∂z̄
=

∂

∂z̄
(f1(z) + f2(z))

= g1(z) + 0

= g(z) for z ∈ ∆(z0, ε).



This then completes the proof of the ∂̄-Poincare Lemma for Br,R.

Now we prove the ∂̄-Poincare Lemma for the punctured disc.

We will use special values for r and R. We define for every integer k ≥ 3

Bk = B 1
k
,1− 1

k
= {z ∈ C | 1

k
< |z| < 1− 1

k
}.

Since g ∈ C∞(∆∗), we must have g ∈ C∞(B̄k) for every k ≥ 3, so by the above argument we know

that there exists fk ∈ C∞(Bk) such that
∂fk
∂z̄

= g on Bk.

We first prove that for every k > 3, there exists αk ∈ C∞(∆∗) such that
∂αk
∂z̄

= g on Bk. Fix k > 3.

Let α ∈ C∞(Bk+1) such that
∂α

∂z̄
= g on Bk+1. Choose a C∞ bump function ρ which is ≡ 1 on Bk,

and has compact support in Bk+1. Set αk = ρα. Now we have αk ∈ C∞(∆∗) and
∂αk
∂z̄

= g on Bk.
Here αk is actually C∞ on all of the unit disk but we will be restricting it later to the punctured disk
so we might as well start here.

Now we will construct a sequence of functions f4, f5, . . . , all in C∞(∆∗) such that (i) for each k,

we have
∂fk
∂z̄

= g on Bk, and (ii) the sequence converges uniformly on compact subsets of ∆∗ to a

function f ∈ C∞(∆∗). It then follows that
∂f

∂z̄
= g on ∆∗.

Fix an arbitrary ε > 0.

We choose f4 ∈ C∞(∆∗) as above so that
∂f4

∂z̄
= g on B4. To construct f5, first choose α ∈ C∞(∆∗)

such that
∂α

∂z̄
= g onB5. The difference f4−α is now holomorphic onB4, so has a Laurent expansion

around the origin converging in B4. Truncate this Laurent expansion from below and above to obtain
a rational function β which is necessarily holomorphic on ∆∗ such that

sup
B3

|(f4 − α)− β| < ε

24
.

Set f5 = α + β. Clearly f5 ∈ C∞(∆∗) and
∂f5

∂z̄
=
∂α

∂z̄
= g in B5.

Repeating the above argument we construct the sequence {fk} such that for k > 3,

fk ∈ C∞(∆∗) with
∂fk
∂z̄

= g on Bk and sup
Bk−1

|fk+1 − fk| <
ε

2k
.



To show the uniform convergence on compact subsets of ∆∗ let D be such a compact set. Let k be
such that D ⊂ Bk. For any integers n > m > k we have

sup
D
|fn − fm| ≤ sup

Bk

|fn − fm|

= sup
Bk

|(fn − fn−1) + (fn−1 − fn−2) + · · ·+ (fm−1 − fm)|

≤
n−1∑
`=m

sup
Bk

|f`+1 − f`|

≤
n−1∑
`=m

sup
B`−1

|f`+1 − f`|

<

n−1∑
`=m

ε

2`

< ε.

Thus the sequence {fk} converges uniformly on compacta to a function f ∈ C∞(∆∗) such that

∂f

∂z̄
= g on ∆∗.

This last statement follows from functional analysis, see for example Rudin’s Functional Analysis.

Corollary: H0,1(∆∗) = 0.
Proof: Let α be a ∂̄-closed (0, 1)-form on ∆∗. Then α is of the form α = α0 dz̄ for some α0 ∈
C∞(∆∗). By the above solution we know that there exists a (0, 0)-form f ∈ C∞(∆∗) such that
∂f

∂z̄
= α0 on ∆∗. Hence every ∂̄-closed (0, 1)-form is exact. Hence the cohomology is zero.



NAME: STUDENT NO:

Q-3) Show that every holomorphic line bundle on the unit punctured disc in the plane is trivial.

Solution:

Since Pic(∆∗) = H1(∆∗,O∗), we need to show that this cohomology is zero.

Consider the exact sequence of sheaves on ∆∗

0→ Z→ O → O∗ → 0,

which gives rise to the exact cohomology sequence

· · · → H1(∆∗,O)→ H1(∆∗,O∗)→ H2(∆∗,Z)→ · · · .

Since ∆∗ is homotopic to S1, the real unit circle in the plane and since dimR S
1 = 1, its higher

cohomology groups vanish, i.e. we have

H2(∆∗,Z) = H2(S1,Z) = 0.

Moreover we have
H1(∆∗,O) ∼= H0,1(∆∗) = 0

as we showed in the previous question.

It then follows from the above exact sequence of cohomology that H1(∆∗,O∗) = 0 as desired.


