Math 114 Algebraic Geometry - Homework 2 - Solutions

Textbook: Phillip A. Griffiths, Introduction to Algebraic Curves, AMS Publications, 1989.

Q-1) Show that any two irreducible conics in \mathbb{P}^{2} are projectively equivalent and moreover that any such conic is isomorphic to \mathbb{P}^{1}.

Solution:

Consider any homogeneous quadratic equation in the homogeneous variables x, y, z. Dehomogenize with respect to z and by change of variables, basically by completing to squares, bring it to the form $x^{2}+y^{2}+1$. That the constant term is not zero is a consequence of the fact that the quadratic equation is irreducible. Now homogenize with respect to z and write

$$
x^{2}+y^{2}+z^{2}=(x-i y)(x+i y)-(i z)^{2}=U V-W^{2}=X Z-Y^{2}=0 .
$$

All the above change of coordinates are linear transformations. Hence every irreducible quadric is projectively equivalent to the quadric $X Z-Y^{2}$.

Now consider the map $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ given by $\phi([s: t])=\left[s^{2}: s t: t^{2}\right]$. This map is injective. Let $W=\left\{[X: Y: Z] \in \mathbb{P}^{2} \mid X Z-Y^{2}=0\right\}$. Clearly $\phi\left(\mathbb{P}^{1}\right) \subset W$ We now show that it is an isomorphism by constructing an inverse. Let $[a: b: c] \in W$. Define $\psi: W \rightarrow \mathbb{P}^{2}$ as follows.

$$
\psi([a: b: c])= \begin{cases}{[a: b]} & \text { if } a \neq 0 \\ {[b: c]} & \text { if } b \neq 0\end{cases}
$$

Check that ψ is well defined and actually constitutes an inverse for ϕ.
Thus all quadrics are isomorphic to \mathbb{P}^{1}.

Q-2) Let $X \subset \mathbb{P}^{3}$ be given as the zero set of the polynomials

$$
x_{0} x_{3}-x_{1} x_{2}=0, x_{1}^{2}-x_{0} x_{2}=0, x_{2}^{2}-x_{1} x_{3}=0
$$

And let $Y \subset \mathbb{P}^{3}$ be given by the parametrization

$$
x_{0}=s^{3}, x_{1}=s^{2} t, x_{2}=s t^{2}, x_{3}=t^{3},[s: t] \in \mathbb{P}^{1}
$$

Show that X is smooth and that $X=Y$. Moreover show that no two of the defining equations for X suffice to define it.

Solution:

Let

$$
f=x_{0} x_{3}-x_{1} x_{2}=0, g=x_{1}^{2}-x_{0} x_{2}=0, h=x_{2}^{2}-x_{1} x_{3}=0 .
$$

Check that $x_{0}=0$ is not in the solution set. Set $x_{0}=1$. From $g=0$, we get $x_{2}=x_{1}^{2}$. And from $h=0$ we get $x_{3}=x_{1}^{3}$ when $x_{1} \neq 0$. When $x_{1}=0$, the point $[1: 0: 0: 0]$ is in the solution space. Now check that the solution space is exactly Y.

To show smoothness we consider the Jacobian matrix.

$$
\left(\begin{array}{llll}
f_{x_{0}} & f_{x_{1}} & f_{x_{2}} & f_{x_{3}} \\
g_{x_{0}} & g_{x_{1}} & g_{x_{2}} & g_{x_{3}} \\
h_{x_{0}} & h_{x_{1}} & h_{x_{2}} & h_{x_{3}}
\end{array}\right)=\left(\begin{array}{cccc}
x_{3} & -x_{2} & -x_{1} & x_{0} \\
-x_{2} & 2 x_{1} & -x_{0} & 0 \\
0 & -x_{3} & 2 x_{2} & -x_{1}
\end{array}\right)
$$

When $x_{0} \neq 0$, then the first and second rows are linearly independent. When $x_{0}=0$, this forces $x_{3} \neq 0$ and then the first and the third rows are linearly independent. Thus the rank of the Jacobian is two, matching the codimension of X. Hence X is smooth.

Clearly $Y \subset Z(f, g)$. But check that $x=0$ forces $x_{1}=0$ and leaves x_{2} and x_{3} free in $Z(f, g)$. Thus $Z(f, g) \simeq Y \cup \mathbb{P}^{1}$. Similar arguments show that $Z(f, h)$ and $Z(g, h)$ are also isomorphic to $Y \cup \mathbb{P}^{1}$.

If you set $k=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3}$, then you can show that $Y=Z(g, k)$. But you may find it interesting to check that although $k=x_{3} f+x_{2} h$, as homogeneous ideals in $\mathbb{C}\left[x_{0}, \ldots, x_{3}\right],(g, k) \nsubseteq$ (f, g, h).

Q-3) Find conditions for a and b which would ensure that $y^{2}=4 x^{3}+a x+b$ to be an equation representing a smooth curve.

Solution:

Let $f(x, y)=4 x^{3}+a x+b-y^{2}$. Then $f_{y}=0$ forces $y=0$. Solving $f(x, 0)=0$ and $f_{x}(x, 0)=0$ together, we get $x^{3}=b / 8$. Putting this back into $f(x, 0)=0$ we get $27 b^{2}+a^{3}=0$. Thus for $f(x, y)=0$ to represent a smooth curve, we must have $27 b^{2}+a^{3} \neq 0$. This is the discriminant of the polynomial $f(x, 0)$ and corresponds to saying that the curve $f(x, y)=0$ is smooth if the polynomial $f(x, 0)$ has no repeated roots.

