\qquad

Math 503 Complex Analysis - Exam 07

1	2	3	4	5	TOTAL
40	20	20	20	0	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Consider the infinite sum

$$
1-\frac{1}{2^{z}}+\frac{1}{3^{z}}-\frac{1}{4^{z}}+\cdots+(-1)^{n+1} \frac{1}{n^{z}}+\cdots
$$

where z is to be considered as a complex variable. Find a region where this series converges.
Discuss if it can be extended to all of complex numbers and if so what kind of a function we get.
Solution: Observe that when $z=x+i y$,

$$
\left|\frac{ \pm 1}{n^{z}}\right|=\frac{1}{n^{x}},
$$

and hence the given series converges absolutely for $\operatorname{Re} z>1$. There we observe that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{z}}=\left(1-\frac{2}{2^{n}}\right) \zeta(z)
$$

Since the right hand side is certainly a meromorphic function on \mathbb{C}, the left hand side also extends to a meromorphic function. Note however that

$$
\zeta(z)=\frac{1}{z-1}+g(z)
$$

around $z=1$ where $g(z)$ is analytic in a neighborhood of $z=1$. Thus we see by a simple calculation that

$$
\lim _{z \rightarrow 1} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{z}}=\lim _{z \rightarrow 1}\left(1-\frac{2}{2^{n}}\right)\left(\frac{1}{z-1}+g(z)\right)=\lim _{z \rightarrow 1}\left(1-\frac{2}{2^{n}}\right)\left(\frac{1}{z-1}\right)=\ln 2
$$

This shows that our infinite sum actually extends to an entire function.

Q-2) Find the exact setting and the exact phrasing (in English) of the Riemann hypothesis as Riemann himself stated it.

Solution:

In his only number theory article, "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse", Monatsberichte der Berliner Akademie, (1859), Riemann sets $s=\frac{1}{2}+i t$, where t is a complex number, and defines the function

$$
\xi(t):=\Gamma\left(\frac{s}{2}+1\right)(s-1) \pi^{-s / 2} \zeta(s)
$$

Then he says
..., the function $\xi(t)$ can vanish only when the imaginary part of t lies between $\frac{1}{2} i$ and $-\frac{1}{2} i$.... and it is very likely that all of the roots are real. One would of course like to have a rigorous proof of this, but I have put aside the search for such a proof after some fleeting vain attempts because it is not necessary for the immediate objective of my investigation.

Note that the only zeros of ξ are contributed by ζ and when t is real s is on the critical line. This is the Riemann Hypothesis.

Q-3) State, but do not prove, a few striking consequences of the Riemann Hypothesis.

Solution:

Probably the first result to quote is

$$
|\pi(x)-L i(x)|<\frac{1}{8} \sqrt{x} \log x, \text { for all } x \geq 2657,
$$

from Wikipedia. Here $L i(x)=\int_{0}^{x} d t / \log (t)$, and $\pi(x)$ is the number of primes less than x.
For a comprehensive discussion see
http://mathoverflow.net/questions/
17209/consequences-of-the-riemann-hypothesis

Q-4) "It is known that $\pi(x)<L i(x)$ for all $x \leq 10^{23}$, and no value of x is known for which $\pi(x)>$ $L i(x)$." (From Wikipedia)
State the story related to this mystery, keeping in mind that the number of atoms in the observable universe is calculated to be between 10^{78} and 10^{82}.

Solution:

The difference $\pi(x)-L i(x)$ changes sign infinitely many times and the first time such a sign change is expected is the so called Skewes' number which is around $10^{10^{10^{34}}}$.

