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The sequence of multiplicities of successive points of an algebraic branch can (p 256)’
be defined through purely algebraic notions. In what follows we present such a
definition which does not differ from the geometric definition except by its form.
We hope that this definition will constitute an answer to a question posed by P.
Du Val* on the relation which exists between his results and the power series?
expansion of the branch under consideration.

| Section 1: i

k being any field, we consider a ring H formed by some power series of a
single variable ¢ with coefficients in k. Let

W(H) :{i():O,il,’ég,...,ir7ir+1,...}4

*P. Du Val, “The Jacobian algorithm and the multiplicity sequence of an algebraic branch”,
Rev. Faculté Sci. Univ. Istanbul (Série A), 7 (1942), 107-112.



be the orders (i.e. the degrees of the first terms with non-zero coefficients) of

the elements of H. The integers g, ?1,...,,%.,... form a semigroup of the non-
negative® integers. Sy, S;,, Si,,...,S; ,... being elements of H of orders iy, iy,
.., 1., ... respectively, any element of this ring is of the form

Z OégSie (Oée € k)
=0

We assume that /1 contains all the series of this form. We denote by I}, the set of
elements of H of orders larger than or equal to h. I is clearly an ideal of H and
its elements are of the form

> S, (a€k).
i¢>h

Lemma 1. ® v being the gcd of the elements of W (H), for r sufficiently large, (p257)
one has
7:7~+1 :/L.T+V7Z.’r‘+2 :ir+2l/,...,l.r+g :Z.r‘i‘él/,...

and there exists a power series of order 1,

T=t (14—2(54#) (07 € k)
=1

such that every element of H is of the form Z;io a7,

Proof. Let us denote the ged of the integers 1, o, ...,7; by v,. Each of these
numbers divides all those that come before it. It follows that for p sufficiently
large we have v, = v,11 = V,19 = --- = v. Then let

V= mlil +m2i2 + - +mpz',,,

mi, ma, . .., M, being integers which are positive, zero or negative. m being the
largest of the integers |my, (i1 /v — 1)|, the multiples of v which are greater than

t=miy +mis+ -+ mi,
are contained in W (H). In fact we have, for ¢ = 0,1,2... i /v — 1,

i+ v = (m+Llmy)iy + (m+lma)is + - - + (m + 0m,)i,

=Ny + n22.2 +-+ npipa



with n, > 0; since m > |myl|. For { = i;/v, we have i + 1; € W(H). In

general, the multiples of v which are greater than ¢ can be written in the form

i+ jip+L0v (0 =0,1,2,...,iy/v — 1, j > 0) and it is obvious that all of
P

these integers are of the form Znhih with n, > 0; i.e. belong to W(H).

h=1
[e.e]

Si, = Z oit’ (0, € k, 05, # 0)7 being an element of order i, in H, we can
=i

choose a power series of the form 7 = ¢ (1 + Zég#) , (0, € k) in such
=1

a way that we have S;, = o0;,7*. Under these conditions the power series in
t with coefficients in £ may be written in the form of power series in 7 with

coefficients in k. In particular the elements of H can be written in the form
o

Z aj,ﬂ'j Y. Tt suffices to prove this for the elements of H of orders greater than
=0

1; since every element of H can be considered as a quotient of an element in
H of order greater than i by a suitably chosen power of S;, = ¢;,7(/¥). The
orders of the elements of A being multiples of v, any element of H is of the

form Z ajrj (oj € k, ay, # 0). For Nv > i, the ring H contains the ele-

j=Nv
o0
ments, SNI/+I/7 SNV+21/> ) SNZ/+€1/ = E af,jij Ay j € k; Qg Nv+tv 7£ 0
j=Nv+Llv
of orders Nv + v, Nv + 2v, ... respectively. We can then choose the series

Z BeSny+e, in such a way that the difference
=1

o0 o0
Sny = E ;T — E BeSnvro = an, ™V + @, 4 -
j:Nz/ /=1

does not contain any terms of order divisible by v, other than the first. Indeed
suppose that 51, s, . . ., 5, are chosen such that the terms of orders Nv+v, Nv +
2v, ..., Nv + hv of the difference

00 h
j Nv h
> ;7 = BiSnvrn = an ™V + ol 4
j:Nz/ =1

(p258)



vanish; it suffices then to set

o™
. Nv-+hv+v

Bhpp=—""—"—

Qph41, Nv+hv+v

so that the terms of orders Nv + v, Nv + 2v, ..., Nv + hv, Nv + hv + v of the
difference

e h+1
j _ Nv h+1
E oy — E BeSnv+o = an, T + aih+l)7“h+1 + -
j:NV =1

vanish. Under these conditions the series Sy, reduces to ay,7". Otherwise the
difference

, . SN i -

S ol (2] = il
11

whose order is not divisible by v will be in H. Therefore every element of H of

order greater then i is a linear combination with coefficients in k of elements of

the form ay, ™" = Sy, 8

Remark. After the preceding theorem, the ring H may be considered as a
subring of the ring of power series of the variable 7' = 7" with coefficients in k.
Let us set i, = i,/v. The orders of the elements of H with respect to this new
variable will be "ig = 0, iy, %is, ..., ",, ..., and for r sufficiently large, one will
have

i1 = Tl + 1, %pge =TI+ 2,1

Lemma 2. The inverse of every element of order zero of H is also an element of
H.

o
Proof. If the order of a = Z oS5, 1s zero, then « is different than zero. In fact

h=0
the coefficients Jj of the product

o

o' [+ BuSs,)
h=1

can be chosen such that we have

(p 259)



acg? H(l + B,S;,) =1 mod t .

h=1
Suppose now that this choice has been made for 3, 5, . . ., 5,_1. We have
n—1
aag! H(l + BrSi,) = 14+ 7Si, + Vnt1Si0 + -+
h=1
and it suffices to set 3, = —,, to have

acy? H(l +B,S;,) =1 mod t .
h=1

For the coefficients (3, chosen in this manner we obviously have
acg’ H(l + 6nS;,) = L.
h=1
OJ

o
Remark. Z ap,S;, being an element of order zero in H, to each n-th root

h=0
00

of ag contained in % corresponds an n-th root of Z a;S;, contained in H. The

h=0
proof of this fact is similar to that of Lemma 2.

’ Section 2: \

Lemma 3. If one denotes by 1,/ S}, the set of quotients of elements of I, by S,
and by [I1,/Sy] the ring generated by I,/ S, the ring [I1,/Sy] does not depend on
the choice of Sy, among the elements of H of order h.

Proof. Let us first note that the set I;,/S), contains the ring H and consequently
[1,/Sk] 2 H.

Let S} = €S}, be another element of order h in H. e is then an element of
[11,/Sh]. Tt follows from Lemma 2 that ¢! is also an element of [I;,/S),]. We then
have

Ih/S}IL = [h/ESh = 6_1([h/5h) Q [Ih/Sh]

5



and therefore
11/ 4] € [In/Sh-
We can obviously show in exactly the same manner that we also have
1/ Sn] € [1n/S)-
We then have [1,/S}] = [I/Sh]. O

The ring [I;/Sy] being independent of the choice of Sj,, we can denote it by
[15].

Remark. The semigroup W ([[},]) clearly contains the semigroup generated
by the integers
i —th = 0,941 — Th, thye — Tpy - - -
which are the orders of the elements of I,/S;,. But as the following example (p260)
shows, W ([1;,]) is not necessarily equal to this semigroup:

Let us consider the ring / formed by all series of the form

Z ()éinin (Oéij € k?),

1,520

where X = ¢4, Y = !9 4 !5, One easily shows that W (H) is formed by the
integers

0,4,8,10,12, 14, 16, 18, 20, 22, 24, 25, 26
28,29, 30, 32, 33, 34, 35, 36, 37,38, .. ...

Then the orders of the elements of I,/ X are the integers

0,4,6,8,10,12, 14, 16, 18, 20, 21, 22,
24,25, 26,28, 29,30, 31,32,33,34, . ..

which generate the semigroup

0,4,6,8,10,12, 14, 16, 18,20, 21, 22, 24,
25,26, 27,28, 29,30, 31,32, 33, 34, . ..

while [/, contains the element (Y/X)? — X? = 2¢17 4 22 whose order is 17.

6



Remark. If for some particular choice of S}, the ring [1,] is equal to I}, /.5y,
then it is the same for all choices of S;,. In fact, S} = €S}, being another element
of order h of H, we have

Ih/S;L = 671[h/5h = 671[]h] = [Ih];

since every element S of [I},] is equal to an element €S of [I},] multiplied by €.

Definition. We say that the ring H is canonical’ if one has [I},] = I,/ S}, for all
he W(H).

Remark. If H is a canonical ring, the integers
th —1h = 0,941 — Th, thyo — Th, - - -
form a semigroup for every h. A semigroup of non-negative integers
1o =0,21,%9, ..., Tp, ...
is called canonical if the sequence
i =t = 0,%h41 — Ipy thy2 — Thy -
is a semigroup for each h. If the sequence of increasing integers
1o =0,21,%9, ..., Tp, ...

is a canonical semigroup, then the power series

clearly forms a canonical ring. W (H) can be canonical without it being the case
for H: The ring formed by the series of the form Z OéinginZE (aije € k),

07,020
with X =t Y =19 4 1% Z = t?7, is such that the orders

0,4,8,10,12,14, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, . . .

of its elements form, as one can easily verify, a canonical semigroup, while f is
not a canonical ring, since [I;] an element of order 17, (Y/X)? — X3 = 217 4122,
which is not contained in 7,/ X.

(p261)



Lemma 4. The intersection of several canonical rings is canonical.

Proof. 1t obviously suffices to prove the lemma only for the intersection of two
canonical rings. H and H' being two canonical rings, let S be a common element
of these two rings. Let h be the order of S let [, and I} be the set of elements of
H and H' whose orders are not less than h. It suffices to show that

(InNI,)/S=1,/SNI,/S
is aring. Now [;,/S and [} /S being rings, it is the same for their intersection. [

Remark. If H is a canonical ring, then so is [/;,]. Indeed consider the set of
elements of /;, . These elements are of the form

i O{l,SiV (Oéy € k,’)
v=h

H being a canonical ring, the ring [/;, ] consists of the set of series of the form

h

E ozl, whose orders are the numbers

O,jl — ’ih+1 —’ih,jg - ih+2 —ih,....

The set of elements of [I;, | of order greater than or equal to j, is then the set of
series of the form

o0

> oﬁ;— (aw € k).

v=h+/{ th

Sine /S;, being an element of order j, = i), — iy, of this set, the set of elements
[o¢]
Siu 1h+e 11/
« = «
(3 o3 =Y al
v=h+4~ h v=h+4£ htt

N being the set of all non-negative integers*, we show in a similar manner that (» 262)

is the ring [/;

1h+l] ‘

if
{O,il,ig, ce ,ir +NV}

*In what follows N will always denote the set of all non-negative integers.'”



is a canonical semigroup, it is the same for

{O,thrl — Uyl — g +NV}

Remark. If the integers
10 =0,%1,%2,...,%n, ...

form a canonical semigroup, then we have i, — 75, < 4, — i,—1. In fact, before
the integers ip, 1 — th—1 = 0,% — th—1,0h41 — Th—1y-- -, 0 — bp_1,... fOrm a
semigroup, we must have i1 — i1 < 2(ip, — i5,_1); from which the inequality
the1 — tp < 1y — 151 follows immediately.

] Section 3:

From the remark which follows immediately Lemma 1, I(x_), contains all
the power series whose orders in 7' = 7" are greater than or equal to N — 1 pro-
vided that N is sufficiently large. [/(y_1),] is then the ring k[T’] of all the power
series in 1" with coefficients in k. This remark leads to the following construc-
tion which allows us to obtain all the canonical rings as well as all the canonical
semigroups.

We begin by considering the ring [I(x_1),] = k[T of all power series in T
and the semigroup Nv of multiples of v by non-negative integers. We choose
an element 7,_; of non-zero order in [/(y_1),| , and a non-zero element v, _;(=
w(T,—1)*) in Nv and we set

i, =k+ T alliv-1y] (i = (N —=1)v).

The ring [/;,_,] and the semigroup {0, v,_; + Nv} (= W([I;,_,])) are canonical.
Similarly we choose an element 7,_» of non-zero order in [/; .| and a positive
integer v, _o (= w(7T,_1)) in {0, v,_1 + Nv}, and we set

[[ir72] =k+T [Iz‘,,.,l]

=k+ kTr—2 + Tr—2Tr—lk[T]7
W ([, _,]) =1{0,vp o, 4o+ vy + Nv}.

oo oo
*In what follows w (Z aiti) denotes the order of the series Z a;ttin t.

i=p =L



Thus we obtain a new canonical ring and also a canonical semigroup. Continuing
in this manner we finally obtain the canonical ring

E+ED+ENTy+ -+ KOV T g+ k[T - T 0T,
and the canonical semigroup (p 263)
{0, 1,1 +vo, ..., + 0+ -+ 1 + Nu}
with

Ty € kThir + EThy1 Thio + - + E[T)Thi1Thyo - - Tra,

(w(Th) =) vh € {Vht1, Vnt1 + Vhgo, o, Vgt + Vngo + -+ + 11 + Nuj

’ Section 4:

|

Given a ring H, the intersection of all canonical rings containing [ is a
canonical ring *H which we call the canonical closure'' of H. Similarly G =
{0,141, 19, ...,%.—1 + Nv} being a semigroup of non-negative integers (v = (i1, ia,
...,i,—1 + v)), the intersection of all canonical semigroups containing G is a
canonical semigroup “G; we call it the canonical closure of G.

It follows from this definition that W (*H) contains the canonical semigroup
W (H); but these two semigroups'? are not necessarily equal, since W (H) may
be canonical without H being so.

| Section 5:

|

Given a semigroup
G = {O, il, ig, c. ,Z.r,1 + NV} (V = (il,ig, c. ,7;7«,1,2}71 + V)),

the canonical closure “G of G is obtained as follows: We consider the semigroup
{0,4, + G} where (7 is the semigroup of integers of the form

Oég(ig - 21) + ag(ig — Zl) + -+ Oén(ln — il),

where the coefficients oy, s, . .., o, are non-negative integers. The semigroup
{0,4; + G1} which then contains G is obviously contained in “G. Note that the
elements of G'; which are less than ¢, — i, are of the form

Oég(ig — 21) + ag(ig — Zl) + -+ (Jéh(ih — il);

10



the integers
Oég(ig — 21) + Oég(ig — Zl) + -+ Oén(Zn — Zl)

withn > h+1, «a, # 0 are in fact greater than or equal to 7;,,; — 7. In particular
the smallest element of (G is i3 — ;. Furthermore it follows that the elements of
{0,4; + G} which are less than i, ; depend only on iy, 45, ..., i, and are linear
combinations of these with integer coefficients. The semigroup {i; + G} being
contained in "G, it is the same for {i; + "G} which contains {i; + G;} 2 G,
and is canonical. The construction of “G is thus reduced to the construction of the
canonical closure of a semi-group of the form

. ./ .
Gy =1{0,i},i5,...,4, 1 +Nv};

for which we have i/, , < i,_;—i;. The repetition of this construction reduces the
proposed construction to that of the canonical closure of a semigroup GG which
itself reduces, for IV sufficiently large, to the semigroup Nv of all non-negative
multiples of . Nv being its own canonical closure, the proposed procedure thus
terminates. Note that the elements of “G' which are thus constructed depend only
on the elements of G which are not greater than themselves; and they are linear
combinations of them with integer coefficients. Suppose in fact that this is proved
for the closure *G; of G;. The elements of “GG; which are smaller than 7,1 — iy
depend only on the elements of (G; which are smaller than ¢, — 75, and they
are their linear combinations with integer coefficients; now these latter ones in
turn depend only on 1,15, ...,17, and are their linear combinations with integer
coefficients. It follows that the elements of {0,7; + "G;} = "G which are smaller
than 751 —¢;, depend only on i, 9, . . . , 71, and they are their linear combinations
with integer coefficients.

Given a canonical semigroup
‘G ={0,i1,09,...,0—1 +Nv} (v =_(i1,00,...,0_1,5—1 +V)),
there exist only a finite number semigroups ¢ such that g = "G. In fact let
9 =10,J1,72, -+ Js» Jot1s- -+ }

be such a semigroup. Let ji, jo, . . ., j, of the integers 71, J2, ..., Js, . . . be smaller
than %,,; = 4,1 + 2v. Since 7,1 and 7,_; + v are linear combinations of
J1sJ2, - - - Jn With integer coefficients, the gcd of these numbers is v. Now to
each system of positive integers smaller than 7,1 = 4,1 + 2v whose gcd is v, we

11
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can associate a multiple jv of v such that every semigroup of non-negative inte-
gers containing the system, contains all the multiples of v larger than jv. Let Lv
be the largest of the integers jv which are thus associated to systems of positive
multiples of v smaller than ¢,,; = 7,_; + 2. The semigroups g for which we
have "¢ = "G contain then all the multiples of v which are larger than Lv and they
differ among themselves only by those elements which are smaller than L.

Theorem 1. The intersection of all the semigroups g such that *g = "G is a semi-
group g, such that *g, ="G.

Proof. Let g be a semigroup such that we have g = “G and that no proper sub
semigroup of ¢ has this property; we will show that g = g,.. Let 7 be the smallest
element of g notin g,. Letig = 0,41, 2, ..., 1), be the elements of g and g, which
are smaller than 7. Since 7 is not contained in g,, the number ¢ is not of the form

Oélil + Oézig + -+ ahih,

where oy, g, ..., o) are non-negative integers. On the other hand g, being the
intersection of all semigroups whose canonical closure is "G, there exists a semi-
group ¢’ such that "¢’ = *G and which does not contain the number 7. Since the
elements of "G = g which are smaller than ¢ depend only on iy, s, ..., %5, the
semigroup ¢” obtained by removing from ¢’ all the the positive integers smaller
than ¢ except i1, is, . . ., 95 still has the property that g” = *G. It follows that the
elements of "G’ which are smaller than or equal to i depend only on the numbers
11,19, ...,1y; since ¢g” does not contain the number 7. Therefore the canonical
closure of the sub-semigroup of g obtained by removing from it the number ¢ is
still equal to “G'. This contradicts the choice of g. We then have g, = g and and
consequently g, = "G. O

The semigroup g, defined in the statement of Theorem 1 is called the charac-
teristic sub-semigroup of all the g such that g = "G. It is clear that the semigroup
gy 1s such that every proper sub-semigroup of g, has a canonical closure different
than g, = "G. Conversely if g, is such that for every sub-semigroup ¢’ of g, we
have "¢’ # “g,, then g, is its own characteristic sub-semigroup.

gy = {0,41,42,...,4_1,%,,... } being the characteristic sub-semigroup of
g, let us consider the integers Y1, X2, ..., x» defined in the following manner:
X1 = %1 X2 1s the smallest of the integers %, %9, ...,%,... which is not of the

form a;x; where o is a non-negative integer; 3 is the smallest of the integers

12
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i1,%2,...,1,... Which is not of the form a;x; + asx> where oy, as are non-
negative integers; finally x1, x2, - - ., X» being defined, x4 is the smallest of the
integers 41, %2, . . . , iy, . . . Which is not of the form

a1X1 + X2+ -+ QpXa

where a1, as, . . ., a,, are non-negative integers. The numbers Y1, xo, - - ., X5 de-
fined in this manner are called the characters of g.

Theorem 2. 7, < v, < --- < 7y being a collection of positive integers, the set of
characters of the semigroup g of integers of the form

a1y + oy + 0+ Qe

where oy, o, ...,qp are non-negative integers, is contained in the collection
Y1, Y25 -5 Ve

Proof. Let x; be the smallest of the characters 1, x2,- .., Xx» of g which is not
contained in the set 7,72, ..., V. It follows from the definition of g, that x; is
of the form ay7v; + agys + -+ 4+ apye where aq, s, ..., qp are non-negative
integers and where 71,72, ...,y are those integers among 71, Vs, - . . , ¢ Which
are smaller than x;. Since 7;,7s,...,7, are elements of the canonical closure
of g, every semigroup containing X1, X2, - - -, Xi—1 contains also vi,72,...,Ve.
This implies that the canonical closure of the semigroup of linear combinations
with non-negative integer coefficients of 1, X2, ..., Xi—1, Xit1s-- -, Xn CONtains
Xi,» and it follows that g, is not a characteristic semigroup. Therefore the set
Y1, Y2, - - -, Ve NEcessarily contains the set x1, X2, - - -, Xa- 0

Theorem 3. g being the semigroup of linear combinations of [the integers]'> 0 < (p266)
Y1 < Y2 < - -+ < 7y with non-negative integer coefficients, the integers

Vy,V2,...,UN_9, UN_1,V
with the property that
g={0,vi,m1 +vo,..., i o+ -y +Nv},

are obtained from 7y, s, . ..,y by the quasi-Jacobian algorithm of Du Val.* The
integers vy, s, ..., UN_1,V appear there as divisors, while the partial quotients

*Du Val, loc. cit.
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represent the number of times each divisor appears in the sequence vy, s, . . .,
vn_1, V. Conversely if the numbers

Vi, Vo, ..., VN1,V

are obtained from ~y1,7s, ..., by the quasi-Jacobian algorithm of Du Val, the
partial quotients being the number of times each divisor appear in the sequence
vy, Vo, ..., UN_1,V, then the canonical closure of the semigroup of the integers of
the form

Q11+ Qo2 +

where a1, oo, . . ., iy are non-negative integers, is g.

Proof. v being the greatest common divisor of the elements of g, we have v, > v.
If 4 = v, the semigroup g consists of the set of all multiples of 73 = v, and
we have g = g = {Nv}. In this case the algorithm terminates at the first step.
Let’s assume that the proposition is proved for every set v, ¥z, , . .., 7, for which
v < 71, and prove it for for the set vy, s, ...,7. Let; be the smallest of the
integers 71, Vo, . . ., ¢ Which is not divisible by ;. Let g be the quotient of v; by
~1 and let us consider the semigroup I' of linear combinations of v; — ¢v1, Vit1 —
qv1,---,% — 971,71 With non-negative integer coefficients. The semigroup “g
clearly contains the semigroup {0,v1,2v1,...,¢7 + '} which contains g. We
then have

*g = {07717271a - dn + *F}a

n=%1V2=7,---,Vg=N

ie.
T ={0,vg41,vg41 + Vgro, - Vg1 + -+ - +vn1 + Nuj

The integers v; — g1, Yir1 — QY15 ---,Ye — q71,71 being the remainders of the
(¢ — 1)-st division of the algorithm applied to the numbers 7y, 7o, . .., e, it suf-
fices to show that the integers vy, 1, Vg 2,...,Vn_1,V are obtained by applying
the algorithm to the integers v; — qv1, Vit1 — qV1s---,Ye — qV1,71- Now 7; —
g1 being smaller than ~;, this was assumed done. Conversely, if the numbers

vy,Va,...,UN_1,V are obtained from -y, s, ...,7, by the quasi-Jacobian algo-
rithm of Du Val, the canonical closure of the semigroup of linear combinations of
Y1, Y2, - - - , Ve Where coefficients are non-negative integers is

{0, 1,y +vo, ..., + 10+ -+ vy + Nk,

14
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which follows from the proposition we have just proved. UJ

X1, X2, - - - » X1 being the characters of g, the semigroup of linear combinations
of x1, X2, ..., xn With coefficients being non-negative integers is the character-
istic sub semigroup g, of g. It follows from theorems 3 and 2 that the integers
vy, Vs, ..., VN_1 are obtained from the characters of g by the quasi-Jacobian al-
gorithm of Du Val, and all the systems of non-negative integers v, ¥z, - . . , ¢ for
which the algorithm produces the same result are obtained from the system of
characters of ¢ by adjoining to it numbers arbitrarily chosen from “g.

] Section 6:

Now let us consider a ring H and its canonical closure “H. The ring H being
of the form
H=Fk+kS; +kS;,+ -+ k[T]S;,

its canonical closure *H can be constructed as follows: Denote by H; the ring

S' a2 S a3 S Ap—1 S

L]= k=2 =z ce [ 2zt LIT1=
n=Xr(5) (3) - (Ce) enmie

where the summation is over all exponent systems of non-negative integers oo, a3,

..., ap_1 such that ap(is — i1) + ag(iz —i1) + -+ - + ap_1(ip_1 — 77) is less than
iy, — 11. The canonical closure *H of H clearly contains

k+ H.S;,

which contains H and we have "H = k + "H,.S;,, where we denoted by “H; the
canonical closure of H;. In general, H; being defined, denote by H,; the ring
obtained from H; in the same way H; is obtained from H. It is clear that for N
sufficiently large, H is isomorphic to K[T']. Let T}, be an element of positive
order in H;. Then we obviously have

- k -+ le —|— k'TlTQ -+ *H3T1T2T3
- ]{Z + le + ]i?TlTQ + -+ leTQ te TNfl + *HNTlTQ e TNflTN
=k+ kO + kO + -+ ENTy - Ty + k[T VT - T Ty
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Remark. For any integer n, the ring £ + H;S;; mod ¢" depends only on H
mod t". To prove this it suffices to show that H; mod ¢"~"* depends only on H (»268)
mod ¢".Similarly the ring k + HyT> mod t"~% depends only on H; mod ¢,
The ring k+kT+ HyTT> mod t" then depends only on H mod ¢". Continuing
in this manner we obtain eventually that

*H:k+kT1+l{fT1T2++k7T1T2TN—1+HNT1TQTN mod "

depends only on H mod ¢".

Lemma 5. If H mod t" is equal to *H mod t", then the set *H mod t"*! is
equal to one of the sets

k + kSzl -+ ]{7522 + 4 /{ISZ‘Z71 -+ [[Z ]S,L mod tn+1 (Zg <n-+ 1)

Proof. The set *H mod t" being the same as H mod t", the set *H mod "1,
which contains the set H mod t"*!, consists of the elements of the form

S+ a*S, mod "t

where S is an element of H, %S, a fixed element of order n belonging to *H,
and « an element of k. Hence every ring H’ mod ¢"*!, contained in the ring H
mod ™! is identical to H mod ¢"*1, if it is contained in *H mod t"*! without
it being identical. Consider now the ring

k + Sil [I“] mod tn+l

which contains # mod t"*! and which is contained in *H mod t"!. After
what we have just noted, the ring k + S;,[;,] mod ¢"™! is identical to one of the
two rings

*H mod t"™', H mod t".

If it is not identical to the first, we have [[;,] = I;,/S;, mod ¢"T171. As *[I;]
mod ¢"1~% depends only on [[;,] mod "1 the sets

] n+1—1i Sl'2 ] n+1—1

[I;;] modt L l{:+S—[L—] mod ¢ !

will be identical, since I;,/.S;, is the set of elements of positive order in [;, /S;,. It
follows that *H mod ¢"*! is identical to one of the rings

k+ S, [I;,] mod t"*'  k+kS; +1I,]S;, mod "t

16



If “H mod ¢"*! is neither identical to k + S;, [I;,] mod " nor to
k + kSzl + *[IZQ]SZ mod tn+1

these two rings are identical to H mod #"*!. Under these conditions we have
[I.,] = I,,/S;, mod t"*1~%2 from which we can conclude the identity of the two

sets
S

Siy

*H mod t"*! is then identical to one of the sets

I;,] mod t"t2 k4 I,] mod ¢" 172,

k + [Il ]Sz mod tn+1, k + IfS“ + [112]51 mod tn+17
k+kS;, + kS, +1,,]S;, mod ¢+,

Continuing in this manner we can show that *H mod t"*! is identical to one of
the sets

k + [Iu]szl mod tn+1
k -+ ksu + [IzQ]SzQ mod tn+l
k+ kS, +kSiy, + -+ + [1;,]S mod ¢+

k+kS;, +kSi, 4+ -+ kS;, + L, 1S mod ",

£+1

Now for ipy; > n + 1, the last one of these sets is # mod t"*1. Then *H
mod t"*! is identical to one of the sets

for i, < n. ]

X1, Xa,..., X, being power series in ¢ with positive orders, we denote by
k[ X1, X, ..., X,] the ring formed by the series of the form

R ' U v - I v
E :O‘hm--anXl X X5

where o, ;,...;, € k and the summation is over all systems of non-negative integers
J15J25 - - - Jn-

17
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Lemma 6. The elements Y1,Ys,...,Y, of "H being chosen such that w(Y;) is
the smallest element of W (*H) which is not contained in W (k[Y1,Ya, ..., Y;1]),
if the elements Y/ Y], ..., Y| | are respectively congruent to Y1,Ys,...,Y, 4
mod t*3¥),  then the smallest element of W (*H) not contained in

W(k[Y], Y5, ..., Y 4 ]) is w(Y)).

Proof. The rings

*H mod t*0%) | k[Y1,Ys,...,Y,_4] mod t*®) k[Y{,...,Y! ] mod t*(%)

being clearly identical, it suffices to show that £[Y/, Y5, ... Y/ ;] does not contain
an element of order w(Y;). Every element of k[Y/,Y, ..., Y/ ;] mod t*(»)+1

being of the form
P(Y/,Yy,....Y]_)) mod )

where P(Y/,Y;,..., Y, ;) is a polynomial with coefficients in k, it suffices to
show that w(P(Y{,Ys,...,Y,_;)) cannot be equal to w(Y,). If the polynomial
P(Y/,Y],...,Y/_,) contains a [nonzero]'* constant term, then Y{,Y;,..., Y/ ,
being elements of positive order we have w(P(Y/,Y5,..., Y. ;) = 0 # w(Y,).
If

P(}/i/v Y2,7 ce 7Y,—1)

14

contains terms of degree 1 without containing a [nonzero] constant term, then we (»270)
can write it in the form

PlO/l/’YVQZ s ’Y},—l) + 53/;, + PQ(K,7}/;7 ce 7Yu/—1)

with 5 # 0; Py(Y/, Yy, ..., Y/ ) being the sum of terms of positive degree with
respecttotheset Y/, Y/ ..., Y,  exceptthe term BY}. w(P (Y], Yy, ..., Y, 1))
is then greater than w(Y) which is by definition different than the order of

Pu(Y], Yy, ...,V )= Pi(Y1,Ye,...,Y;01) mod t“07),
We then have
w(P(}qlv Yv2/7 s 7Yu/71)) = min<w(Y;>>7 (Pl(}/ilu }/;7 T 7Y )) < ’LU(Y )

Finally if P(Y/,Y;,...,Y/ ) contains neither a term of degree 1 nor of degree 0,
then we can write

P(le/’ Yé/’ to 7Y/—1) = P(lea Yv?a s 7Y1/—1) mod tw(YV)—H.

14
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w(P(Y1,Ys,...,Y, 1)) being different than w(Y, ), it is the same for

’LU(P(YY, Yélv ce 7Y/—1))'

v

OJ
Lemma 7. Y1,Y,,...)Y, 1Y, and Y/, Y], ... Y | having the same properties
as in the statement of Lemma 6, if the canonical closure of k[Y1,Ya,...,Y, 1]

does not contain an element of order w(Y,), then it is the same for the canonical
closure of k[Y{, Y], ..., Y] ,].

Proof. Letiy = 0,i1,192,...,1%,,... be the orders of the elements of k[Y/, Y7, ...
Y,_,] written in increasing order and let /; be the set of elements of k[Y{, Y5, ...,
Y)_] whose orders are not smaller than i,. Denote by S;, an element of order i,
of k[Y{,Yy,....Y! |], and by H' !* the canonical closure of k[Y/, Y], ..., Y/ ].
The rings

Y

*H mod t*%) ' mod t*™),  k[Y/,Y,...,Y. ] mod t**)
being identical, it follows from Lemma 5 that the ring H' mod tw()+1 g iden-
tical to one of the rings

k+kS + kS, +- +[I/]S], mod t*) !

with i, < w(Y,). Let u be the smallest of these integers ¢ for which this iden-
tity holds. If g = 0, then H' mod t*(**)*! is identical to k[Y],Ys,..., Y/ |]
mod #*)*1 which does not contain an element of order w(Y,). Suppose then
that y is positive. To show that 7' does not contain an element of order w(Y,), it
suffices to show that [I] | does not contain an element of order w(Y,) — i,. Let
I;, and "I;, be the sets of elements of order not smaller than i, of k[Y7,...,Y, ]
and *H. The rings

*H mod t*™) | k[Y1,Ys,...,Y,_1] mod t*®) k[Y{ Y] ...,Y! ] mod t*®*)

14
being identical, it is the same for the sets

[l;,] mod ) =in

I; /Sz mod tw(YU)_i“, ]Z, /S; mod tw(YV)_iu7
p p

©w
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where S;, is an element of £[Y], Y5, ..., Y, _1], such that we have
Si, =S, mod 0%,
m

It follows that we can associate to every element Z’ of I; /S; an element Z of
I;,/S;, in such a way that we have

Z = 7" mod t*¥) s,

Let us consider in particular a set of elements Z7, Z3, ..., Z, of I; /S; chosen in
the following way:

(1) Z] is an element of smallest positive order in I} /5] ,

(2) 2y, Zs, ..., Z;_, being chosen, we choose Z in such a way that w(Z}) is
the smallest positive element of W (!; /S; ) which is not contained in W (k[Z],
Zyy s 25 4])s

(3) w(Z,) < w(Y,) — i, + 1 and every element of W (I; /S; ) smaller than
w(Y,) — i, + Lis contained in W (k[Z}, Zy, ..., Z}]).

E[Y!,Y],...,Y! ] mod t*(*)*! being distinct than H' mod t*(**)+1 while
kY, Yy ..., Y! ] mod t**)*+!isidentical to ' mod t*), the ring k[Y], Y7,
.., Y/_,] cannot contain elements of orders w(Y, ). It follows that the numbers

w(Zy),w(Zy), ..., w(Z,) are smaller than w(Y, ) —4,.The conditions imposed on
the choice of 77, 7, ..., Z, implies further the identity of the rings

[];u] mod tw(Yu)—iu-‘rl’ k[217 Zé, ol Z;)] mod tw(Yy)—z‘u-H;

It suffices then to show that k[Z;, Z;, . .., Z)] does not contain an element of order
w(Y,) —i,. Now let Z1, Zs, ..., Z, be elements of I;, /S;, such that we have

Z; = Zj'. mod ¢*(v) = (1=12,....p).

The canonical closure of k[Y7,Ys, ..., Y, _1] not containing any element of order
w(Y,), the ring k[Zy, Zs, ..., Z,] does not contain any element of order w(Y,) —
in- The elements Zy, Zs, ..., 2y, Zppy = Y, /S, of [';,] and 71,73, ..., Z,
fulfill the conditions of the statement of Lemma 6 with respect to the canoni-
cal ring [*I;,]. The ring k[Z], Zy, ..., Z}] then cannot contain elements of order
w(Zyp1) =w(Y,) — i, O

Let us now consider a set of elements X, X, ..., X, of *H chosen as fol-
lows: X7 is an element of smallest positive order in *H; X, Xo,..., X, 1 be-
ing chosen, X, is an element of *H such that w(X,) is the smallest element of
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W (*H) which is not contained in W (H,_,), where H,_,'¢ is the canonical clo- (272)

sure of k[ X1, Xo, ..., X,_1]. The elements of W (*H) being linear combinations
with non-negative integer coefficients of some finite number of elements, the ele-
ments X1, Xo,..., Xy, ... chosen in this manner can only be finite. A set of such

elements (X, Xo, ..., X,,) will be called in what follows a base of *H.
Theorem 4. (X, Xy, ..., X,,) being a base of *H, the integers

w(Xy), w(Xs),...,w(X,)

depend on H and they constitute a subset of the characters of H.

Let us first prove the following proposition which will facilitate the proof of
this theorem.

Lemma 8. H, being the canonical closure of k[X1, X, ..., Xy where X1, X,
.., X isabase of "H, one can choose the elements Y1,Ys,...,Y,, ... of H, sat-

isfying the conditions of the statement of Lemma 6 considered for the ring H, (i.e.

w(Y;) is the smallest element of w(H,) not contained in W (k[Y1,Ys, ..., Y, 4]))

in such a manner that the sequence Y1,Ys,...,Y,, ... contains the set Xy, X,
. ¢

Proof. For { = 1, we clearly have H; = k[X;] and we can set Y; = X;. Assume
that the proposition is proved for ¢ and let us prove it for £ + 1. Let Y7, Y5, ..., Y,
be the elements chosen from #H, whose orders are smaller than w(X,,;). The
elements of W (7?{,) which are smaller than w(X,,1) are then the same as those of
W (k[Y1,Ya,...,Y,]). The smallest element of W (7?,;1) not contained in W (H,)
being w(Xy.1), set Y, 11 = Xyy1, and choose Y, 12, Y, 13, ... from H,,; in accor-
dance with the statement of Lemma 6 with respect to H,, ;. The sequence

1/717}/’27"'7Y'l/7Y’l/Jr17"'

then satisfies for H,.; the conditions of the statement of the proposition which we
wanted to prove. 0

Proof of Theorem 4. Let Xy, Xo,...,X,, and X}, X},..., X/, be two bases
of *H. If the integers w(X1), w(X2), ..., w(X,,) and the integers w (X7 ), w(X}),
..., w(X! ) are not the same, then at least one of the integers (w(X1), w(Xs),...,
w( X)), w(X]),w(X)),...,w(X],)) does not belong to one of the sets (w(X),
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w(Xa), ..., w(Xp)), (w(X7),w(Xs),...,w(X,,)). Let w(X;,,) be the small-
est of these integers which do not belong to one of these sets, and consider the
canonical closures H,, H; of the rings k[ X1, Xo, ..., X/, k[X], X, ..., X]]. Be-
cause of the way XJ’-, X are chosen, it follows that the rings H, mod tw(Xer)
H, mod t“Xi+1) are respectively identical to the rings *H mod t*(Xe+1) *H
mod t*Xé1). w(X,4,) being by definition larger than w(X;,,), the ring H,
must contain an element of order w(Xj,,). Now let (Y1,Y5,...,Y,,...) bea
set of elements of 7, chosen in accordance with the statement of Lemma 8 and
let Y7,Y5,...,Y, be those elements of this set whose orders are smaller than
w(Xj,,). The rings

*H mod t*®e) H, mod t*Xe) H, mod e

k[Y1,Ys,....Y,] mod t*(Xes)
being identical, there exist elements Y/, Yy, ... Y, of H such that
Y/ =Y; mod &) (j=1,2,...,v).

The canonical closure of k[Y/,Y5, ..., Y]] which is contained in H cannot con-
tain any element of order w(X,,,). Therefore the canonical closure of k[Y;, Y5,
.., Y,] which is none other than H, (since the set (Y1,Y>,...,Y,) contains the
set (X1, Xy, ..., X/)) does not contain an element of order w (X, ;) (Lemma 7).
Therefore w(X 1) is equal to w(X,,,) which contradicts the hypothesis.

That the numbers w(X1), w(Xs), ..., w(X,) constitutes a subset of the char-
acters of "H is established as follows: w(X7) being the smallest element of W (*H)
we have w(X;) = x3. Assume that w(X,) is the smallest of the numbers
w(X1), w(Xs),...,w(X,)" which is not a character of *H. w(X,) would then
be contained in the canonical closure of the semigroup generated by the elements
of W (*H) which are smaller than w(X,). Now the elements of W (*H) which are
smaller than w(X/) are contained in W (#,_;). We then have w(X,) € W(H,_1)
which contradicts the choices of the X;. O

In what follows we will call the numbers

w(Xl) = *Xla w(XQ) - *X2> s 7w(Xm) = *Xm

the base characters of *H. It follows immediately from the definition of a base of
*H and from Theorem 4 that every system of elements X1, "X, ..., " X,, of "H
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such that w(*X;) = *x1, w("X2) = *xa,...,w(*X,,) = “x;» constitutes a base of
*H.

A set of elements Y7, Y5,....Y, of H is called a system of generators, if "H
is the canonical closure of k[Y; — 1, Y — ma, ..., Y, — n,| where ny,m9,...,1,
denote the constant terms of Y7, Y5, ..., Y.

X1, X,, ..., X,,being a base of *H, let us consider a set of elements Y7, Y5,

..., Yy, chosen in the following manner:

Y =X+ X] X €k

Yo =Xo + Xé Xé ety

Y =X + X;n X, €EHm—1
where H; denotes the canonical closure of k[ X7, X5, ..., X;]; the elements Y7, Y3,
..., Y, clearly constitutes a system of generators for *H. Conversely every sys-
tem of generators contains a subset chosen in this manner. In fact Y7,Y5,...,Y,
being a system of generators for *H, denote by 7,12, . . ., 7, the constant terms of

Y1, Ya, ..., Y,. Atleast one of the integers w(Y; —my ), w(Yo—n2), ..., w(Y,—n,)
is then equal to *xq, let’s say w(Y; — 11) = "x1. We can then set X; = Y] — n;.
Since W (H;) contains all the elements of W (*H ) which are smaller than *y,, we
can choose X € H, in such a way that we have

w(¥; = X)) =N (1=23,...,v).

At least one of the integers w(Y; — X/) is equal to *yo; otherwise the canonical
closure of k[X1,Y, — XJ,...,Y, — X/]| which is by definition is identical to "H
does not contain any element of order *y». Let w(Y2 — X7) = "y2. We can then set
Xy =Y, — X/ and so on. It follows from these considerations that every system
of generators of *H contains at least m elements, m being the number of the base
characters of *H; we call this number the dimension of *H.

’ Section 7:

‘H=Fk+ kT, + kTh'To+ -+ k[T|T\T5 - - - Ty_1 being a canonical

ring, the characters, as well as the base characters, for the rings
[i,| ="Hy =k + Kkl + -+ k[T Thy1 Thgo - Tvoa

are invariants of “H. The characters of *H}, are clearly determined by those of *H.
But it is not so for the base characters of *Hj,.
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Consider for example the rings

H=k+ k"1 +t)+ k(1 +t) + kt™ (1 +t) + k[t]t>, (v>1)
‘H' =k + kt" + Et% (1 +¢) + kt™ (1 + t) + k[t]t>.

It can easily be checked that these two rings are canonical and that their characters
which are also those of the semigroup

W(H)=W(H') = {0,4v,6v,7v,8v + 1,80 + 2,80 + 3,... }

are the same. These characters are clearly 4v, 6v, 7v, 8 4 1. Let us now construct
a base for *H: We can clearly set X; = t*(1 + t); k[X;] is a canonical ring and
the smallest element of W (*H') not contained in W (k[X]) is 6v; we can then set
X5 = t%(1 +t). The canonical closure of k[ X, X5] is

k[X1, Xo] =k + kt" (1 + 1) + kt® (1 + ) + k[t]t*.

We can then choose X3 = t™(1 + t) as the third element of the base of *H. The
canonical closure of k[X7, X5, X3] then being equal to *H, the base characters of (»275)
*H are 4v, 6v, 7Tv. In a similar manner, we observe that the elements X| = v,

X5 =1t%(1+41t), X} = t™(1 + t) constitutes a base for *H’. The base characters

of *H and *H' are then the same. Let us now calculate the base characters of the

rings

Hy = k + kt? + kY + k[t
HY = k+ k(14 1) + k(1 +¢) + k[f)t".

A base of *H, '8 is formed by t?, t3" #**! while the elements t2* (1+t), t3* (1+t)
form a base of *Hj, since the canonical closure of k[t?” (1 +1t), % (1 +t)] contains
the element

t37(14t)

2
— ) ="t (14t
tQV(lth)) (1+1)

whose order is 4 + 1. The base characters of *H; are then 2v, 3v, 4v + 1 while
those of "Hj are 2v, 3v.

The base characters of the rings [I;,| = "Hy, constitute then new invariant

elements for *H.

h

The following considerations allow us to determine successively the base char-
acters of the *H},. Consider an arbitrary element of positive order in "H. Let T be
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this element and let (X1, Xs, ..., X,,) be a base of "H. Denote by *x; the smallest
of the numbers

Y= w(X), Xe = w(Xa), - X = w0(Xn), N1 = 00"

such that the canonical closure of k[X1, Xa, ..., X;_1,T] contains® an element

of order *x;. The elements T, T X, TX,,..., TX; 1, TX;1,...,TX,, constitute
then a base of k + *H'I" which is canonical. In fact

k[X17X27 s 7Xi—17XZ'+17 s 7Xm7T]

being the canonical closure of k[ X1, Xo, ..., X; 1, Xit1,. .., Xm, T}, the canon-
ical closure of k[T, T X1,...,TX; 1,TX;1,...,TX,,] clearly contains the ring

k+ Th[X1, Xa, - Xi1, Xivts - Xoms T1.

As k[Xy, Xo, ..., X;-1, Xi41,- -, X, T| contains an element of order *y;, we
have

k[Xl,XQ, e >Xi—1aXi+l> RPN ,Xm,T] == >k}7'

The canonical closure of k[T, T Xy, ..., TX;_1,TX;41,...,TX,,] is then identi-
cal to
k+T"H

which it contains; since the ring k[T, T X1, ..., TX; 1,TX;11,...,TX,,] is itself
contained in k£ + T *H. Then to show that the elements

T.TX:,....TX; 1, TX;s1,....,TX,,

constitute a base of k + T *H, it suffices to show that the canonical closures of the (p276)
rings

k[T, TX,,...,TX;] (1<j<i—1)
k[T, TX,...,TXi1]
k’[T,TXl,...7TXZ'_1,TX1'+1,...,TX}L] (n>h21+1)

do not contain elements of orders, respectively,

w(TXj+1), ’UJ(TXZ'_;,_l), ’UJ(TX}H_l).
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Now these closures are identical respectively to

k+ TRX,, X, X, 1]
k4 TR[Xy, Xor - X1, 1]
k+ Tk[XlaXQa s 7Xi—17Xi+17 cee 7Xh7T]7

where the overline symbol denote always the canonical closure of the correspond-
ing ring. It then suffices to show that the canonical closures of the rings k[ X7, . . .,
X, T kX, oo, Xio, T K[ X, oo, X1, Xisa, - -, X, T') do not contain ele-
ments of orders w(X 1), w(X;4+1), w(Xpnt1), respectively. Now the fact that the
canonical closure of k[ X7, ..., X;, T for j < i — 1 does not contain any element
of order w(X 1) follows from the definition of 7. If the ring

kX, ..., Xi1,T]
contains an element of order w(X;, ) or the ring
kX1, .. Xic1, Xy, oo, X, T
an element of order w(X}, 1), the canonical closure of one of the rings

kX1, Xoyoo o, Xio1, Xiga, oo, Xon, T,
k[Xl,XQ, R ,Xifl,Xi+1, R 7Xh>Xh+27 R ,)(vrn,qﬂ]7 forh <m — 1,
k[Xl,XQ, R 7Xi—1aXi+17 e 7Xm—17T]7 forh =m — 1,

contains a system of elements of orders "y, s, . . ., "\ and as a consequence a
base of *H. This implies the existence of a system of generators of *H containing
only m — 1 elements, contrary to what has been established above (see Section 6).

The base characters of k 4+ T *H are then

w(T), w(T)+"x1, w(T)+*x2, -« ., W(T)+"Nie1, W(T)+Xit1, - - -, W(T)+"Xom-

As the base characters of k£ + 7"*H do not depend on the choice of the elements
X1, Xs, ..., X,,, the numbers *y; depend only on 7" and *H. We are going to
denote them by *y; = *\(T,"H).

In a similar manner the characters of k + T *H are obtained from those of *H
by the expressions

w(T), x1+w(T), xa+w(T),..., xe+w(T), forw(T) # x1,X2:-- -, Xt
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and
w<T)7 X1 +’UJ<T), s 7Xj71+w<T>7 Xj+1 +U}(T), s 7X€+w<T)7 for U}(T) = X]7
where we denote the characters of *H by x1, X2, - X¢-

In particular in the case when all the characters of *H are also its base charac-
ters, all the characters of k+7 *H are also its base characters if w(7") is a character
of *H or if x(7',"H) is infinite.

Remark. p being an arbitrary element of W (*H), we can always choose an
element T of order w(T') = p of *H , in such a way that x(7,"H) is equal to
one of the numbers *y1, "2, - - ., Xm, Xm+1 = 00 Which exceeds p, provided that
p is different from the numbers *y;. Suppose in fact that p is distinct from the
numbers *y; < *y2 < -+ < *\., and let "y, be such that we have "y, < p < *yyi1.
If Xy, Xs,...,X,, is a base of *H, the canonical closure of k[X7, Xs,..., X/]
contains, by definition elements of orders p. Let 7" be one of these elements, and
setT =T+ X}, (withh > ¢, X,,.1 =0). For¢ < j < h — 1 the sets

kX1, Xy, ..., X;,T] mod tX"  k[X;,Xs,...,X;,T'] mod tX*
k[X1,Xy,...,X;] mod tx

being identical, the ring k[X;, X,..., X;,T] does not have elements of order
w(Xj41) = "Xj41. For j < ¢, p = w(T) being greater than "y, 1, the sets

K[X1, Xa, .., X5 mod X9+ E[Xy, Xy, .., X5, T] mod ¢!

are identical and consequently kX1, X5, ..., X;, T'] does not contain elements of
order w(X,+1). However the ring

k[XbXQ? s 7Xh—17T]7

which contains the element 7”7, contains also the element 7' — 7" = X}. We then
have x(T,"H) = *\p.

Let us now consider a canonical semigroup
G="Gyo={0,v, 1 +vo,..., 1+ 1o+ - +vn_1+Nv} (vn_1 #V).

The semigroup
*G N—1 — Nv
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clearly has only one character which is X§N‘1) = v. The characters of

*GN,Q = {O, Vn_1t NV}

are then, after the rule indicated above,

XgN_m = UN-1, XgN_Z) =VUn_1+ V.

The characters of GG y_3 are obtained from the previous ones according to the (»278)

same rule:
N-3 N-3
X§ )= Uy, Xé ) = Un_o +un,
(N—3) for vy_o>vn_1+UV,
X3 =VUN—2+VUN_1t+V,
N-3 N-3
§ ) = UN-2, xé ) = VN—2 + VUN-1, for vNoo=vN_1tV
N-3 N-3
§ ) = UN-2, Xé ) = VN—2 T VUN—1 TV, for vn_o=vNn_1.

We obtain successively, by applying always the same rule, the characters
eI LY

of all the semigroups “G; = {0, ;41 + Git1}.

Now let
UIno1 =1, Y =
Un_9 = 2, x§ 2 = UN_1, (2 D=y + v;

and in general
w (i—1 o (i—1 « (i . (i—1 « (i
( ):Via Xg ):VZ+ Xg)a7X§h ):V’L+ X’(‘)Zfla

i =", g
. (i—1 « (i « (i—1 « (i X X
X’(‘hi+)l =V + X’(k )i+1’ ey X’E z‘fl) =V + X%, for hl S gi,
¥ X « (i—1 w (-1 w (i v (-1 « (@
Uiy ="+ 1, x§ ):Vz‘, Xé ):VH‘ Xg)w"u XEL ):VH‘ Xézp
*XEZJ_:II) =V + *XSZZ), RN 7*X£zi__11) =V + *X£27 for *h,L = *& + 17
whgre h; is any of the positive integers h < ‘*& + 1 for which we have v; <
*ng) with *X£2+1 = oo, if v; # *ng), e ,*X£2; if not *Xﬁz)i is the one among
*XY), *X;"), o *X(Z,) which is equal to v;.
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It follows immediately from the preceding remarks and the considerations be-
fore them that we can always choose the elements 7; € *H; in such a manner that
the characters and the base characters of the rings

"Hy_1 = k[T], w(T) = v,

"Hy_o =k +"Hy_1TNn_1, w(Tn-1) =vn_1

* i—1 = k + *Hzﬂv U)(,I;) Vi,
‘H = *H() =k + *HlTl, w(Tl) =1

are respectively

The characters The base characters
N—-1 x (N—1
XY, Y
N-2 N-2 x (N=2) %« (N-2
XA, AT,
i—1 i—1 i—1 w (i—1) « (i—1 x (i—1
Xg )7Xé )7"'7Xéi71); Xg )7 X; )7"'7 Xﬁ&*i’
0 0 0 %« (0) % (0 « (0

In particular the base characters of *H = *H, coincide with its characters if
and only if we choose "h; = *; + 1 every time we had to make a choice; the
dimension of *H will then be the greatest of the dimensions of the canonical rings
having the same characters.

Theorem 5. Ifthe base characters

w (N=1)_ % (N—=2) s (N—2 x (i—1) x (i—1 . (i—1 % (0 . (0
X:([ );Xg )7Xg );"';XE )7X; )7"'7Xg‘fi_l)7"';X§)7"'7X£)

are constructed by setting

*ng) = the smallest of the numbers *ng), *Xéj), U *)(9)
hj €j+1

which are not less than v,

the dimension of the ring corresponding to *H is the smallest possible among the
dimensions of canonical rings having the same characters.
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Proof. Let

N-1 N—-2 N—-2 i—1 i—1 i—1
XA AT SENRRY RN U BRRY U

be another system of base characters, obtained from the same numbers v;. We
have to show that we have ¥, > *¢; (i = N — 1,N — 2,...,0). v being an
arbitrary integer, denote by */;(v) the number of those

*ng)7 *Xé2)7 o *X£2

which are not smaller than v. Similarly let ;(/) be the number of those e,

Txg), cee Txg? which are not smaller than v. We will prove, at the same time, that

we have

The equalities

Uy 1=y 1=1, WUy o="lyo=2,
Uy =y =Tn (V) =y 1(v) =0,
WUy o — "N o =Tn_o(v) =N _o(v)=0

being obvious, it suffices to conclude from
o, >0, 0(v) = (v) < T =
the inequalities
>, W (v) = (v) <y — .

We distinguish the following cases:

(1) 6, =", Tx&,? is finite;

(2) o, >, Txg}?i is infinite, *X(;) is finite;
(3) 0, >, Txﬁ,? is infinite, *ng')i is infinite;
(4) o, > *;, TX%) is finite, *X(;l) is infinite;
(5) ;> *;, TX%) is finite, *X@i is finite.;

1 TX%?_ being finite, ';(1;) is not zero. ;(v;) — *;(v;) being less than or equal
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to ; — *¢; = 0 the number *;(v;) is not zero. Then *X%)i is finite. It follows that

we have
sz‘—l = Tfi =" ="_;.

Let us show that we still have
ng’—l(’/) - *gi—l(y) < Tgi—l — i (: 0)

for all v. According to the recursive formulas

i—1 i—1 i i—1 i
TX% ):l/i> Txg ):Vl_'_TXg)?aTXghz ):VZ_FTX’(rh)Z*l?
i—1) i) (i-1 i)
TXJ(rhi+1 =V + TXJ(rhi+1a s 7TXTEZ._1) =V + TXJ(;&.)
%, (1—1 %, (1—1 x (1 x (1—1 x (2
Xg ):Vu Xé ):Vz“i‘ Xg)w--a Xghi ):VH’ X£h)rlv
o (i-1) o (-1) (i

_ % (0) — SWOR
X*hﬁ»l =V + X*hi+17 SRR X*&;l =V + X*EZJ

it is clear that we have

01 (v) =10, for v <uy,

Y (v) =v —v) -1, for y<v<vy+ TX%,
T€@71<V> = T&(u — Vi)7 for v; + TX’E:L) < v,
Uia(v) =", for v <y,

lia(v) ="0(v —v) — 1, for y<v<vy+ *X%)“
Uia(v) ="t(v —u), for v;+ *X»(f)i < .

It follows that, for

v<u+ min(Tng_, *X(;L)) and for v > + max(fxgz, *X(;)),

we have
Tﬂi_l(l/) — *fi_l(l/) = T&‘(V — l/i) — *fz(l/ — l/i) S 0.
If ) < ) we have min(*!;), i) ) =5 max(fy§y)  {))) =Tk}, and
Tgi_l(y) — *gi—l(y) = TEZ(V—I&) — *EZ(I/ — Vi) -1 < 0
(for v; + *ng)i <v<vy+ Txﬁfj).
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It Tx% < *XS%) , V; being less than or equal to Txgi? , there is no number *X§i)
Txgh) and *Xgh) We then have for v; + Tx%} <v<vry+ *X(Z)

between

Tgi_l(l/) — *gi_1<l/) = TE,(V — I/') — *€<I/ - l/z‘) +1
= Wi(v — 1) = (TX§; )+1
<)) =) +1< 1.

) e, > ., Txgh) is infinite *X(;L) is finite. In this case we obviously have
. . =%, +1,%,_; = *,, and therefore ¢, ; > *; ;. The recurrence formulas (»2s1)

which provide the numbers Txg-i_l) and *Xgi_l) leads to others where we have

o, (v) =1+ 1, for v <y,

1 (v) = TE (V — i), for v, <v,

i (v) = for v <uy,

i (v) =" (V —v) — 1, for vi<v<uy + *XS«Z)N
Cia(v) = Uiy — 1), for v +54 <,

from which we easily obtain the inequality

0 (v) —a(v) <y -, < 1.

3) For 0, > *;, 1 th infinite, *X(;’i infinite, it is clear that we have ¥, ; =

0. +1,%_1 =" +1and hence ¢, 1 > *,_;. The recurrence formulas which

give the numbers X§ 1), *XEZ produce on the other hand
Tgi_l(V) = J%Z —+ 17 *Ei—l(y) = *gz + 1, for v S Vi,
0, (V) =W(v — ), i (v) ="(v — 1), for v; <v,

from which we get
0 (V) =iy (v) <V — .
@) ;> *0;, '\, finite, *'; infinite. We then have
0y =%, iy =10+1,
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sz‘—1(V) = sz‘, i (v)="1+1, for v <y,
)=y —v) =1, G (v)="v—1v), for v;<v<u+ Tx%?,

T, (V) = (v — ), Cia(v) =" —v), for v+ TX&}Z <v,
and hence
;1 >4,
1 (V) = (v) =0y — ", for v <y,
W (V) = (V) = (v —v) = (v —1vy) — 1, for v; <v<uy+ TX%?
< Wy =,

Tx%?_ being finite but greater than or equal to v; while *Xff’i is finite, we have

*gi_l(y) = *EZ(V - Vi) = 07 for v Z v; + Txg}?p

and hence

TE,'_1<I/) — *&'_1<I/) = TE,'_1<I/) S Tgi_l(w + TX]{Z)Z), for V; + TX1(»}2 < v,

IN

0 (v + TX&;L)Z) — i1 (v + TX&Z)
<My =",
5) 0, > *;, Tx%? is finite, Txﬁa is finite. In this case the inequalities
>, U (v) =) <y —

are obtained from ; > *¢;_, ¥;(v) —*;(v) < ¥; —*; in exactly the same manner
as in the case (1). O

{y being the number of characters of

‘G={0,v,11 +vo,...,v1 + 1o+ +vn_1+ Nv},
"y the number of base characters *XSO), *Xgo), ... obtained from "G in accordance
with the statement of Theorem 5, we will see that the number of base characters
of a canonical ring 'H, such that W (1H) = G, is between */; and /. Conversely
one has
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Theorem 6. n being any integer between o and (y, there exists a canonical ring
of dimension n whose characters are those of "G.

Proof. It suffices to show the existence of a canonical ring of dimension n from
the existence of a canonical ring of dimension n — 1. Suppose then there exists a
system of base characters
N—1 N-2 N-2 0 0 0

WA T e
obtained from *G' following the rules mentioned before and that we have ', =
n — 1. The number %, being smaller than ¢, there exist integers ¢ for which Tx%?_
is finite without being equal to v;; let 1 be the smallest of these integers. We can
assume that the system of base characters

(0) (0)

N-1 N-2 N-2
( )aTX§ )aTXé );"';TXI 7"'7TXTEO

TXl
has been chosen among the systems which satisfy the same conditions, in such a
way that p is largest possible. This being the case, let
N-1 _
Tg?\/—l =Wy =1, TX (V=D _ (V=)
Uy y=Ttn2=2, T

(1) () (1)
Y= ™ = N =

!

1

(p—1) -1 (p=1) -1
o =T, w1, BT =R :(TXg) ’
o =R,

(1—1) (1) (1-1) (u—1)
N st = v+ Xy Wz = X

!
1 - 1 )

(N-2) N—2 (N-2) N-2
A AN G A

with Ty’ §,’ji = oo. The collection Tx{(ufl), Txé(’kl), . ,Tx{g(ufl) is clearly equal to

/
w—

the collection TXY‘ _1), Txé“_l), ot %‘u‘_ll’ and the number Ty’ $§;j)1 = v, + Tx%.
. (p=1)

The number v, cannot be equal to x 'y, ;. Because otherwise we would have
o (w=1) oo, | /(u,—l) ot

X, = X' =X Th;ji and the corresponding system
.
—2 -2 -1
Txll(ﬂ ):V,ufla Txléﬂ ):Txlgﬂ )+Vu717~--

(n—2) (p—1) (n—2) (p=1)
f /Th;ﬁ‘l = TX/Thu + Vy—1, TX/Tth.Q = TX/T]'L/LJ'_Q + Vy—1y---
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will be composed of the same numbers as the system (p 283)

—2 —2 —1
TXYL ) _ Vo1, Txgu ) _ TX&” )+Vu—1>---,

(n=2) _ i (p—1)
i

f (n=2) _ 1 (u—1)
Xin,+1 = Xin

+ Vp-1s TXThquQ = Xip,41 T Vu-1,-- -
This then allows us to construct, by letting
TX/(N—?’) _ ot (u3) fow=3) _ 4 (u-3),

1 = X1 e Xty = Xig, g0

(n—4) —4 (u—4) —4
TX{ :TXgu )7"'7T ,TEM_4 :T J(rZL_AL);

TX{(O) _ TX(O) t ,(0) _ 1 (0),

1 90 X g XTgOa
a system of base characters Txl’(N_l); o Tx{(o), Txé(o), .. aTXT/g((?) satisfying the
same conditions as the system Tng_l); celd Txgo), Txéo), cee TX$§O) except that Ty’ %),
are infinite or equal to v; for ¢ = 1,2,..., ; — 1 and u. Therefore if X'%j,)/ is the
I

first of the numbers "y’ §’), which is neither infinite nor equal to v/,,,, we would have
X i q 1
i’ > p, contrary to the choice of the system

$ (N=1) 4 (N=2) 4 (N-2) 1 (0) 4 (0) 1. (0)

X1 7 X1 » X2 yeees X1 X2 ey Xigg s
. . +(e=1) Sy . (p=1)
Thus v, being different than 'x 'y, | which is the only number among 'y
which is not equal to a number "~ we can set Ty’ 5;;,‘11’ = TX%‘:? and consider
H— =
the set () (2) ()
TX{N =Vy-1, TXé# :Vufl""TX{# e

which then is composed of the numbers

—2 -2 -2
TX%“ )7 TXgH )7 cee >TX$Z_2)

and of Ty’ §,{j;ﬂ v = Tngﬁi +v,+v,_1. Similarly we show that v,,_, is distinct

than Ty’ $;j;ji +v,_1; which allows us to set Ty’ %{_23 = Txg,’fQ

manner we finally construct the system

), Continuing in this
n—2

©) 4 /(0 (0)
TXll 7TX2/ 7aJrXT/£O
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which is composed of

and the number 'y

His

216
216
216
702
702

15t column
4
7
11
18
25
43
61
72 115
126 169
180 223
234 277
288 331
270 504
486 720
702 936
918 1638
1620 2340

(“i + v, + Vu—1 + - - - + v1. We then have

©) 1 (0)
i s e

(0)
y o '7E(w0

W =W+1l=n—-1+1=n.

2322, 2340, 2358, 2376, 2383, 2390, 2394, 2397 + N}

the first column of the table being at the same time the system of characters of *G.

547
763
979
1681
2383

N s W

7
18
18
18

54
54
54
54
54

216
216
216
702
702

274 column

4

7
11
18
25
43
61

72
126
180
234
288

270
486
702
918
1620

115
169
223
277
331

547
763
979
1681
2383

N b W

7
18
18
18

54
54
54
54
54

216
216
216
702
702

37d column

4

7

11

18

25

43

61
72 115
126 169
180 223
234 277
288 331
270 504
486 720
702 936
918 1638
1620 2340

~N s W

7
18
18
18

54
54
54
54
54

216
216
216
702
702

4th column

4

7
11
18
25
43
61

72
126
180
234
288

270
486
702
918
1620

504
720
936
1638
2340

O

The following table shows the systems of base characters which correspond to
the semigroup

"G = {0, 702,1404, 1620, 1836, 2052, 2106, 2160, 2214, 2268,

5th column
1
3 4
4 7
7 11
7 18
18 25
18 43
18 61
54 72
54 126
54 180
54 234
54 288
216 270
216 486
216 702
702 918
702 1620

As examples of rings /I whose characters are 702, 1620, 2340, 2383 we can
quote the following:

kﬂt7027t16207t23407t2383]

kt702 1—|—t72)3,t1620(1+t72)7,t2383(1+t72)9]

)3’t1620(1 +_t115)7’t2340(1 *_t115)9]

k
k
k

[
[t702 1 —|—t115
[
[

36

(

(
t702(1 4_t7)13,t1620(1 +_t7)30’t2340(1 4_t7)44]
t702(1 *_t?)lS(l *_t79)37t1620(1 +_t7)3(1 %_t79)f
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whose base character sequences are given by the above five columns respectively.

Finally let us point out that the characters of *H and the base characters of
*H,*Hq,...,"Hy_1 which are, as we have seen above, are invariants of *H, do
not constitute a complete system of invariants. That is to say we can construct
canonical rings *H and *H’ which cannot be transformed into each other by a
substitution of the form

t—=tlao+art+ - +aut"+---), (v #0)
in such a way that the characters of *H and *H’, as well as the base characters of
*H,"H,,...,"Hyx_y and "H',"H{, ..., "H},_, are equal respectively. For example

let

H=k+kt"(14+1)+ k(1 +t) + kt™ (1 +t) + k[t
H =k + k" (1 +t+ ) + k™ (1 +t + ) + kt™ (1 +t +°) + k[t]t*

where v > 2. These rings have the same characters which are
dv,6v, Tv,8v + 1.
Their base characters are also the same: (p 285)
v, 6v, Tv.
The rings "H,, "H} both being identical to
k4 kt® + kt* + k[t)t",

base characters of *Hy, "H), *H}, "H) are respectively the same as those of "Hj,
*Hy,*H3, "H4. On the other hand there exists no substitution of the form

() t — t(ag + agt + agt? + )

which transforms *H to *H’. In fact such a transformation which maps *H to *H’
should map *H; to *Hj, i.e. onto itself. Now assuming that 2v is not divisible by
the characteristic of k, the substitutions of the form («), which transform the ring

*Hy =k + kt* + kt* + k[t]t"
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onto itself, are of the form
t— t(ap + at” + ag t? + ag, T4 )
none of which transforms the element
vy At
of *H to an element of the same order in *H’ which is of the form

§O(t4y + t41/+1 + t4l/+2) + 51 (t61/ + z(/_61/—1—1 + t61/+2) + L

’ Section 8:

|

Let us consider now an algebraic branch passing through the origin and is
defined by

where Y;(t), Y5(t), ..., Y,(t) are power series in ¢, whose constant terms are zero.
Let us consider the ring k[Y(t), Ya(t),...,Y,(t)]. We can assume that this ring
contains all elements whose orders are greater than a sufficiently large number
(Lemma 2).

Theorem 7. *H being the canonical closure of of k[Y1(t),Ya(t),...,Y,(t)], let
W(CH) ={0,v1,v141vs,...,v1+va+- - -+vny_1+ N} The multiplicity sequence
of the successive points of the branch Y1(t),Y3(t), ..., Y, (t) is

Vl,l/g,...,I/N_l,l,l,....

Proof. Let w(Y;(t)) be the smallest of the numbers

WYy (), w(Ya(t), .., w(Ya(t)).

The point O = (0,0, ...,0) is then a multiple point of order w(Y;(¢)). On the
other hand it is clear that w(Y](t)) = v4. It suffices then to show that the multi-
plicity sequence of the successive points (¢ = 0) of the branch*

Ya(t) / Ya(t)

Yi(t) =Y1(t),Y5(t) = ) Ya(t) = Y (t)

*See P. Du Val, loc. cit. and J. G. Semple, ”Singularities of space algebraic curves”, Proc.
London Math. Soc. (2), 44 (1938), 149-174.

38

(p 286)



which is obtained from Y (%), Ya(%), ..., Y, (¢) by resolving it at the point O, are
VQ,I/3,...,I/N,1,1,1,....

We move the origin of the coordinates to the point ¢ = 0 of the branch Y] (¢), Y5 (¢),
.., Y(t), which then becomes

}/1/(75) - 771’}/2/(75) 12, 7Y1;(t) — T

where 71,12, . . ., 1, denote the constant terms of the series Y] (¢), Y5 (), ..., Y. (t).
I,, being the ideal of k[Y;(t), Ya(t), ..., Y, (t)] formed by its elements of orders
greater than or equal to v, it is obvious that

(1] = KV (8) = 1, Yo (8) = ma, -, Y (8) = ).

Now we know that

‘H=Fk+Yi(t)[L,]
and that

W([l,]) =1{0,v0, 9 +v3,..., 0 +v35+ -+ +vn_1 + N}
Therefore the origin is a multiple point of order v for the branch
Y(t) = m, Y3(t) = m2, . Y () =
In other words, the smallest of the integers
w(Y{(t) = m), w(Y3(t) = n2),. .., w(Y(t) =)

is 5. We complete the proof of theorem 7 by repeating this argument several
times?!. O

It follows from theorem 3 that the numbers v4, 15, ..., vy_1,... are obtained
from the characters of *H in exactly the same way that these numbers, considered
as the multiplicities of the branch, are obtained from the characters of Du Val
associated to the branch Y7 (t), Y5(t), Y3(t), . .., Y, (). Therefore the characters of
Du Val of this branch are the same as those of k[Y; (%), Ya(?), ..., Ya(t)].

It is obvious that if two branches
YVi(t), Yal), . Vall);  Zi(1), Zo(0), -, Zn(1)
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passing through the origin can be transformed one into the other by a birational
transformation which is regular at the origin, then the rings

KYi(),Ya(t), . ... Ya(D)], K[Z1(t), Zo(t),. ... Zm(t)]

are the same or, more precisely, can be transformed one into the other by a substi-
tution of the form ¢ — t(ap + aut + - - -), (ap # 0) and conversely. We then say
that these two branches are regularly equivalent two each other. For two regularly
equivalent branches , the rings

H = kY3 (1), Ya(b), ... Yo(D)], “H' =Kk[Z:(1), Za(L), -, Zm(D)]

can obviously be transformed among themselves by a substitution of the form
t — tlag + ast + --+), (ap # 0); but from the identity *H = *H’ we cannot
deduce the equality of

K[Yi(1), Ya(t), ..., Ya(®)], K[Z1(t), Za(t), ..., Zm(t)].

We say that the two given branches are canonically equivalent if we have "H =
*H'. Two regularly equivalent branches are also canonically equivalent without
the converse necessarily being true.The characters of *H and the base characters
of "Hy,*H,,...,"Hy_; are then invariants of the branch Y;(t), Y5(t),...,Y,(t)
for canonical equivalence and consequently for regular equivalence. Let us note
however that the characters and the the base characters of *"H, "H1, *H, ..., "Hn_1
constitute a complete system of invariants neither for canonical equivalence nor
for regular equivalence; since we saw above that these characters and base char-
acters do not suffice to determine *H.

The series Y, (t), Y2(t), ..., Y,(t) clearly constitute a system of generators for
H = Ek[Y1(t),Ya(t),. .., Yu(t)].

At the end of Section 6 we saw how one can construct the system of generators
of *H starting from its base elements. In particular we saw that, m being the
dimension of *H, i.e. the number of its base characters, every system of generators
of *H contains m elements which constitute themselves a system of generators for
*H. This is expressed geometrically by saying that if m is the number of base
characters of k[Y;(t), Ya(t), ..., Y,(t)], then one of the projections of dimension
m of the branch Y;(t), Y5(t), ..., Y, (t) is canonically equivalent to it while none
of the projections of dimension less than m is equivalent to Y; (¢), Ya(¢), . .., Y, (t).

Istanbul University
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Translation Notes

"Here I will denote the number of the page where this line begins in the original text. (page 1)
By a power series Arf always means the formal power series throughout this article. (page 1)

3 Arf uses numerals to denote sections. For ease of reference I explicitly used the word Section.
(page 1)

*It should be understood throughout the article that we always have 0 = iy < iy < ip < - .
(page 1)

3 Arf wrote positive here but he certainly means non-negative. (page 2)

®Arf uses the term Auxiliary Theorem but Lemma seems to be a better choice in English.
(page 2)

"Here Arf wrote S; = - - -, but that being clearly a typo, I changed it to S;, = - - - (page 3)

8Arf does not use end-of-proof symbol but I inserted this symbol to enhance readability.
(page 4)

?Canonical rings are now known as Arf rings. (page 7)

0Here Arf uses the Fraktur font &. I use N. (page 8)

"'This is now known as the Arf closure. (page 10)

12 Arf writes group here but certainly means semigroup. (page 10)

3Here Arf does not say integers but it is implied. (page 13)

“Here “nonzero” is intended but is not written in the original text. (page 18)
5 Arf uses $)' here. Tuse H'. (page 19)

16 Arf uses $y_1 here. Tuse H,_1. (page 21)

"Here Arf uses w(X,,), but w(X,) is probably more correct. (page 22)

18 Here it is written *H{ but it is a typo. I wrote *H;. (page 24)

19 Arf wrote here Xm+1 = 00, but it should certainly be *y,,1+1 = 0. (page 25)

41



20There was a serious typo here. Instead of “contains”, it should be “does not contain”.
(page 25)

2IHere Arf writes “theorem 5”, but it is clearly a typo. I wrote “theorem 7”. (page 39)
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1,2

I/Sh, 5

Sh, 2
W(H), 1
[1,/Sh], 5
[Ih]’6

*H;, 23, 24
X(T,"H), 26
k[X1, Xo, ...
k[ X1, X5, 24
w(T),9

, X, 17

Arf closure, see canonical closure
Arf ring, see canonical ring

base characters of *H, 22
base of *H, 21

canonical closure, 10
canonical ring, 7
construction, 15
structure of, 9
canonical semigroup, 7
construction, 10
structure of, 9
canonically equivalent, 40
characteristic sub-semigroup, 12
characters, 13

dimension of *H, 23

Lemma 1, 2
Lemma 2, 4
Lemma 3, 5
Lemma4, 8
Lemma 5, 16

Lemma 6, 18
Lemma 7, 19
Lemma §, 21

order, 2

regularly equivalent, 40
Remark 1, 4

Remark 2, 5

Remark 3, 6

Remark 4, 7

Remark 5, 7

Remark 6, 8

Remark 7, 9

Remark 8, 16

Remark 9, 27

Section 1, 1

Section 2, 5

Section 3, 9

Section 4, 10

Section 5, 10

Section 6, 15

Section 7, 23

Section 8, 38

system of base characters, 30, 34
system of generators, 23

Theorem 1, 12
Theorem 2, 13
Theorem 3, 13
Theorem 4, 21
Theorem 5, 29
Theorem 6, 34
Theorem 7, 38
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