
In this booklet you will find solutions to the

• Fill in the boxes to make the following a true statement. No explanation is required.
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Fall 2017 Midterm-1 Question-1
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Solution of Fall 2017 Midterm-1 Question-1-b:

First observe that we cannot have ab = 0 since then f ′(x) would not change sign at x = 2/3. So
a ̸= 0, and b ̸= 0.

From f(2/3) = 0 we get (2a/3 + b)c(2/3)d = 0. This then implies that 2a+ 3b = 0, and c > 0,

We have f ′(x) = ac(ax + b)c−1xd + d(ax + b)cxd−1. From limx→(2/3)+ f ′(x) = +∞ we conclude
that a > 0 and 0 < c < 1.

Since f ′(x) is continuous at x = 2/3 and changes sign there we must have f ′(2/3) = 0. Writing
f ′(x) = (ax+ b)c−1xd−1[(ac+ad)x+ bd], and recalling that 2a+ b ̸= 0, from f ′(2) = 0 we get, after
substituting b = −2a/3, that 3c+ 2d = 0.

Substituting b = −2a/3 and c = −2d/3, we get f ′′(2 +
√
2) = (279)a2d(d + 1). But f ′′(x) is

continuous at 2+
√
2 and changes sign there, so f ′′(2+

√
2) = 0. This forces d = −1 and c = 2/3 .

Now we have f(x) =
(a/3)2/3(3x− 2)2/3

x
. From here we have f(2) = (a/3)2/321/3. But f(2) =

21/3. Equating these and keeping in mind that a > 0, we get a = 3 , which then gives b = −2 .
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Fall 2018 Midterm-2 Question-1
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Solution of: Fall 2018 Midterm-2 Question-1-b:

We have f(x) = axb + cxd, f ′(x) = abxb−1 + cdxd−1, and f ′′(x) = ab(b− 1)xb−2 + cd(d− 1)xd−2.

If both of b and d are larger than 2, then f ′′(0) would be zero. Since f ′′(0) > 0, we must have either
b = 2 or d = 2. Let us take d = 2 . (The case for b = 2 is similar.)

Now we have f(x) = ax2(xb−2 +
c

a
). Since f(201/3) = 0, we have

(201/3)b−2 = − c

a
. (1)

We also have f ′(x) = abx(xb−2 +
2c

ab
). Since f ′(2) = 0, we have

2b−2 = −2c

ab
. (2)

Dividing equation (1) by equation (2), and simplifying, we get

2

(
5

2

) b−2
3

= b. (3)

By inspection we see that b = 2 and b = 5 are two solutions. Since y = 2(5/2)(x−2)/3 is concave
up, and y = x is a straight line, these two graphs can intersect at most at two points and we have just
found all solutions. Here is the graph of these two functions:

Since b is assumed to be larger than 2, we must have b = 5 .

Now equation (1) becomes

20 = − c

a
, or equivalently, 20a+ c = 0. (3)

On the other hand f(2) = 8 gives
8a+ c = 2. (4)

Solving equations (3) and (4) together we get

a = −1

6
, and c =

10

3
.

If at the beginning, instead of d = 2, we had chosen b = 2, then we would find d = 5, a = 10/3 and
c = −1/6.
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Fall 2019 Midterm-1 Question-1
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Solution of Fall 2019 Midterm-1 Question-1-b:

Q-1-a) When 0 < x < 1, we have x −
√
x < 0. If we let t = x −

√
x, then t goes to zero from the left

while x is going to zero from the right. Hence

lim
x→0+

f(x−
√
x) = lim

t→0−
f(t) = B .

Q-1-b) When 0 < x < 1, we have x sin2(1/x) ≥ 0. In fact when xn = 1/(π + 2nπ) for n = 1, 2, 3, . . . ,
we have f(xn sin

2(1/xn) = f(0) = C. This means that in any neighborhood (0, δ) with δ > 0,
we have infinitely many points where f(x sin2(1/x)) = C. When x → 0+ but x ̸= xn, then
x sin2(1/x) → 0+. Hence

lim
x→0+
x̸=xn

f(x sin2(1/x)) = A, and lim
x→0+
x=xn

f(x sin2(1/x)) = lim
n→∞

f(xn sin
2(1/xn)) = C.

Since A ̸= C, we have lim
x→0+

f(x sin2(1/x)) does not exist. Hence

lim
x→0+

f(x sin2(1/x)) = DNE

Q-1-c) When 0 < x < 1, we have t = x − x2 sin(1/x) = x(1 − x sin(1/x)) > 0. This shows that as x
goes to zero from the right, t also goes to zero from the right. Hence

lim
x→0+

f(x− x2 sin(1/x)) = lim
t→0+

f(t) = A .

Q-1-d) Putting t = x− sinx, we see that for 0 < x we have t > 0, and as x goes to zero from the right, t
also goes to zero from the right. Hence

lim
x→0+

f(x− sinx) = lim
t→0+

f(t) = A .

Q-1-e) Putting t = x− tanx, we see that for 0 < x < π/2, we have t < 0. [ This can be seen as follows:
Let ϕ(x) = x − tanx for 0 < x < π/2. Then ϕ(0) = 0 but ϕ′(x) = 1 − sec2 x < 0, so ϕ(x) is
decreasing starting from ϕ(0) = 0 and is negative on 0 < x < π/2.] Also note as before that as x
goes to zero from the right, then t also goes to zero but from the left. Hence

lim
x→0+

f(x− tanx) = lim
t→0−

f(t) = B .
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Fall 2019 Midterm-2 Question-1-b
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Solution of Fall 2019 Midterm-2 Question-1-b

f(3) = 0 gives a = 3 .

Now f(0) =
3

c
but f(0) is given as 6. So from

3

c
= 6 we get c =

1

2
.

At this point we have, for x ≥ 3, f(x) =
x− 3

bx+ (1/2)
.

lim
x→∞

f(x) =
1

b
. But this limit is given as 4. So we must have b =

1

4
.
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Fall 2020 Midterm-1 Question-5
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Solution of Fall 2020 Midterm-1 Question-5-b

f(0) = 2 gives b = 2d.

When x = 2, the denominator x2 + c|x|+ d = x2 + cx+ d vanishes which gives

d = −4− 2c, so we also get b = −8− 4c.

Now we have f(x) =
ax− 4c− 8

x2 + c|x| − 4− 2c
.

For 0 < x < 2 we have

f(x) =
ax− 4c− 8

x2 + cx− 4− 2c
, and f ′(x) = −ax2 + 4 a+ 2 ac− 8 cx− 4 c2 − 16x− 8 c

(x2 + cx− 4− 2 c)2

From here we have lim
x→0+

f ′(x) =
2c− a

4 + 2c
. But we also have lim

x→0+
= −2. Thus we get

a = 8 + 6c.

Putting this too into f we get for x < 0,

f(x) =
(8 + 6c)x− 4c− 8

x2 − cx− 2c− 4
, x < 0,

and

f ′(x) = −2
4x2 − 4 cx+ 16 + 24 c+ 3 cx2 + 8 c2 − 8x

(x2 − cx− 4− 2 c)2
, x < 0.

Then

lim
x→0−

f ′(x) =
−4(c+ 1)(c+ 2)

(c+ 2)2
.

Since this limit exists we must have c ̸= −2, so we can cancel (c+ 2) to get

lim
x→0−

f ′(x) =
−4(c+ 1)

(c+ 2)
.

But this limit is given as 4. Solving for c from

−4(c+ 1)

(c+ 2)
= 4,

we get c = −3

2
.

Then substituting this value of c into the previous findings for a, b and d we get a = −1 , b = −2

and d = −1 .
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Fall 2021 Midterm-1 Question-5
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Solution of Fall 2021 Midterm-1 Question-5-b

Since f(−5) = 0, we must have −125a+ b = 0.

Since lim
x→∞

f(x) = a and this limit is given as 2, we have a = 2 and hence b = 250 .

We now have

f(x) =
2x3 + 250

|x3|+ c
.

Since this function is defined everywhere, the denominator never vanishes. Hence we must have
c > 0.

Note that for x > 0 we have

f ′(x) =
6x2(c− 125)

(x3 + c)2
< 0.

Hence c < 125. Thus 0 < c < 125.

We also note that for x > 0,

f ′′(x) =
12x

(x3 + c)3
[(250− 2c)x3 + c(c− 125)].

Since the denominator does not vanish for x > 0, this rational function is continuous and changes
sign at x = 3. Setting f ′′(3) = 0 we end up with the equation

[c2 − 179c+ 6750] = [(c− 125)(c− 54)] = 0.

Therefore c is either 54 or 125. Since 0 < c < 125, we conclude that c = 54 .
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Fall 2022 Midterm-1 Question-4
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Solution of Fall 2022 Midterm-1 Question-4-b

f(0) = 2 gives b = 2c.

f(2) = 3 gives a =
6 + c√

2
.

Then our function becomes

f(x) =

√
2(6 + c)

√
x+ 4c

2(x+ c)
.

Next we put x = 3−
√
5 to get

f(3−
√
5)− (1 +

√
5) =

−2
√
5 + 2 + c

√
5− c

2(
√
5− 3− c)

= 0.

Equating the numerator to 0 we see that c = 2 .

Then from the previous equations about a and b we get a = 4
√
2 , b = 4 .

15



Fall 2023 Final Question-4
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Solution of Fall 2023 Final Question-4:

4a. If f has a derivative, then f is continuous. Every continuous function has an antiderivative by

the Fundamental Theorem of Calculus. In fact g(x) =
∫ x

0

f(t) dt is an antiderivative of f when f is

continuous.

Hence the answer here is TRUE

4b. This sounds too god to be true! So we look for a counterexample. For example, we know that
every continuous function has an antiderivative (see 4a. above) but not every continuous function is
differentiable. Any example of a non-differentiable continuous function will serve as a counterexam-
ple.

So the answer here is FALSE

And a counterexample is |x|

4c. This again looks suspicious. For example if you integrate both sides of f ′(x+ 2π) = f ′(x), then
an arbitrary additive constant will come into play which will definitely change the way f behaves. For
example if f ′(x) = 1, then clearly f ′(x) is periodic but none of its antiderivatives, x+C, is periodic.

So the answer here is FALSE

And a counterexample is x

4d. Since no continuity condition is imposed on f we can construct an easy function as follows:
f(x) = x when x is an integer, and f(x) = 0 otherwise. Then clearly f(x) has no limit as x goes to
infinity.

So the answer here is FALSE

Another counterexample is given as x cos(2πx)

4e. We met this before in question 4b of this year’s second midterm exam! In fact after substituting
u = xt we find ∫ x

0

f(xt) dt =
1

x

∫ x2

0

f(u) du.

Hence we get
d

dx

∫ x

0

f(xt) dt = − 1

x2

∫ x2

0

f(u) du+ 2f(x2)
?
= f(x2).

Clearly not every continuous function will satisfy such an elaborate identity.

So the answer here is FALSE

And a counterexample is x
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The notorious Problem 40 of Homework-2 in Fall 2022

Solution: Let a ̸= b be the two points where the tangent lines coincide. Let y = L(x) be an
equation for the tangent line to the curve f(x) = x4 − 2x2 − x at the point x = a. We need to solve
simultaneously the following two non-linear equations in the two unknowns a and b.

f ′(a) = f ′(b) (1)
L(b) = f(b). (2)

The first equation says that the slopes of the tangents at the points a and b are the same. The second
equation says that the tangent line at x = a passes through the point (b, f(b) and having slope equal
to f ′(b) is tangent to the curve also at that point.

The first equation simplifies to

(a− b)(a2 + ab+ b2 − 1) = 0.

Since a ̸= b we must have the second factor equal to zero, which gives

b =
−a±

√
4− 3a2

2
.

Using the + sign for b and putting it into equation (2) above we obtain

3a2(2− 3a2) +
√
4− 3a2(3a3 − 4a) + 2 = 0.

Solving this we get

a = −1 and a =

√
3

3
.

Substituting these into the formula for b above we get

b = 1 and b =

√
3

3
, respectively.

Since we need a ̸= b, we have only
a = −1 and b = 1.

Using the minus sign for b we get a = 1 and b = −1. Hence {a, b} = {−1, 1} is the only solution.
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You can also argue as follows.

The slope of the line joining the points (a, f(a) and (b, f(b) must be equal to f ′(a), or to f ′(b) which
is the same. Thus we can write

f(a)− f(b)

a− b
= f ′(a)

(a4 − b4)− 2(a2 − b2)− (a− b)

(a− b)
= 4a3 − 4a− 1

(a3 + a2b+ ab2 + b3)− 2(a+ b) = 4a(a− 1)(a+ 1).

After multiplying both sides by a− b ̸= 0, we get

(a4 − b4)− 2(a2 − b2) = 4a(a− 1)(a+ 1)(a− b).

The right hand side vanishes when a = −1, 0, 1. In that case

(a4 − b4)− 2(a2 − b2) = 0

(a4 − b4) = 2(a2 − b2)

(a2 − b2)(a2 + b2) = 2(a2 − b2)

a2 + b2 = 2

b2 = 2− a2.

Then

b =

{
±1 if a = ±1,

±
√
2, if a = 0.

We now check that

f ′(0) = f ′(±1) = −1, and f ′(±
√
2) = ∓

√
2− 1 ̸= −1.

Hence the only solution is {a, b} = {−1, 1}
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