MONOMIAL CURVES AND THE COHEN-MACAULAYNESS OF THEIR TANGENT CONES

A THESIS
SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE INSTITUTE OF ENGINEERING AND SCIENCES OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Sefa Feza Arslan
February, 1999

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Asst. Prof. Dr. Sinan Sertöz(Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Dr. Alexander Klyachko

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy.

[^0]I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Dr. Hurşit Önsiper

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Dr. Varol Akman

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Sciences

ABSTRACT

MONOMIAL CURVES AND THE
 COHEN-MACAULAYNESS OF THEIR TANGENT CONES

Sefa Feza Arslan
Ph. D. in Mathematics
Advisor: Asst. Prof. Dr. Sinan Sertöz
February, 1999

In this thesis, we show that in affine l-space with $l \geq 4$, there are monomial curves with arbitrarily large minimal number of generators of the tangent cone and still having Cohen-Macaulay tangent cone. In order to prove this result, we give complete descriptions of the defining ideals of infinitely many families of monomial curves. We determine the tangent cones of these families of curves and check the Cohen-Macaulayness of their tangent cones by using Gröbner theory. Also, we compute the Hilbert functions of these families of monomial curves. Finally, we make some genus computations by using the Hilbert polynomials for complete intersections in projective case and by using Riemann-Hurwitz formula for complete intersection curves of superelliptic type.

Keywords : Monomial curves, tangent cone, Cohen-Macaulay, Gröbner basis, Hilbert function, genus.

ÖZET

TEKTERIMLİ EĞRiLER VE TEĞET KONiLERINiN COHEN-MACAULAY OLMA PROBLEMI

Sefa Feza Arslan
Matematik Bölümü Doktora
Danışman: Asst. Prof. Dr. Sinan Sertöz
Şubat, 1999

Bu tezde, $l \geq 4$ için her afin l-uzayında orijindeki teğet konileri CohenMacaulay olan ve bu teğet konilerinin minimum üreteç sayısı istenildiği kadar büyük olabilen tekterimli eğriler olduğunu gösteriyoruz. Bu sonuca ulaşmak için, sonsuz sayıda tekterimli eğri ailelerinin ideallerinin tam bir betimlemesini veriyoruz. Bu tekterimli eğri ailelerinin teğet konilerini belirlemek ve bunların Cohen-Macaulay olduklarını incelemek için Gröbner teorisini kullanıyoruz. Ayrıca, bu tekterimli eğri ailelerinin Hilbert fonksiyonlarını hesaplıyoruz. Son olarak, projektif uzayda eksiksiz kesişimlerin cinslerini Hilbert polinomlarını kullanarak, bazı süperelliptik eğrilerin cinslerini de Riemann-Hurwitz formülünden yararlanarak hesaplyyoruz.

Anahtar Kelimeler : Tekterimli eğriler, teğet koni, Cohen-Macaulay, Gröbner bazları, Hilbert fonksiyonu, cins.

ACKNOWLEDGMENTS

L'algèbre n'est qu'une géométrie écrite; la géométrie n'est qu'une algèbre figurée.
(Algebra is but written geometry; geometry is but drawn algebra.)

Sophie Germain (1776-1831)

I would like to thank my advisor Sinan Sertöz not only for introducing the world of algebraic geometry to me but also for his guidance, patience and readiness to help me. Without his encouragement through the development of this thesis, it would be much difficult to finish this thesis.

I would like to thank Wolmer Vasconcelos for his excellent hospitality, his readiness to help me and fruitful conversations during my stay at Rutgers University. I would like to thank TÜBİTAK for BDP Grant which made this visit to Rutgers University possible. I would like to thank Simon Thomas and Rutgers University Department of Mathematics for their hospitality and support during my visit. I would also like to thank ODAK Social Researhes Ltd for their support during this visit. I would like to thank Alexander Degtyarev, Alexander Klyachko, Hurşit Önsiper and Varol Akman for reading and commenting on this thesis. I would like to thank all people of Bilkent University Department of Mathematics, especially Metin Gürses for their helps.

I would like to thank Berna who always encouraged me with her great love and support, and with whom we shared everything and will continue to share.

I would like to thank all my family for their love and support, which always gave me strength. Lastly, I would like to thank to all my friends, who with their presence, love and support give me hope and strength and with whom I share the ideal to do good things for this country and for this world.

TABLE OF CONTENTS

1 Introduction 1
2 Monomial Curves 4
2.1 Generators of $I(C)$ 5
2.2 Frobenius Problem and Monomial Curves 7
2.3 Tangent Cone of a Monomial Curve at the Origin 8
3 Cohen-Macaulayness 12
3.1 Definition and Significance 13
3.2 Checking Criteria for Graded Rings 16
4 Cohen-Macaulayness of the Tangent Cone 19
4.1 Literature 20
4.2 When is $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right) \mathrm{CM}$? 22
4.3 A family of monomial curves in l-space which have CM tangent cones 24
5 Hilbert Functions and Genus Calculations 33
5.1 Hilbert Series of $I\left(C_{m}^{[l]}\right)$ 33
5.2 Hilbert Polynomial of a Projective Complete Intersection 35
5.2.1 The Hilbert Polynomial of X_{r} 35
5.3 Genus Computations of Complete Intersection Curves of Su- perelliptic type 36
5.4 Affine Case 36
5.4.1 Projective Closure of C 36
5.4.2 A Finite Morphism to \mathbb{P}^{1} 42
5.4.3 Ramifications of φ 42
5.4.4 The Genus Calculation 44
6 Conclusion 47

Chapter 1

Introduction

Classification of singularities of varieties is an important problem in algebraic geometry. The tangent cone of a variety at a point and Cohen-Macaulayness are both important for the purpose of classifying singularities. Tangent cone of a variety at a point, which gives local information by approximating the variety at this point, is especially useful when the point is singular. Cohen-Macaulayness, which is a local property, also gives information about the singularity. Vasconcelos gives a beautiful characterization of Cohen-Macaulayness by expressing that although most of the Cohen-Macaulay rings are singular, their singularities may be said to be regular [43, p311]. Also, Cohen-Macaulayness makes it possible to have connections between geometry, algebra, combinatorics and homology, and this is a very rich ground for being able to do computations. Thus, our principal aim is to check the Cohen-Macaulayness of the tangent cone of a variety at the origin.

Let V be a variety in \mathbb{A}^{l} and $I(V) \subset k\left[x_{1}, x_{2}, \cdots, x_{l}\right]$ be the defining ideal of the variety V. Let $P=(0, \cdots, 0)$ be a point of the variety and \mathcal{O}_{P} be the local ring of the variety at P. We have the isomorphism

$$
\begin{equation*}
g r_{\mathfrak{m}}\left(\mathcal{O}_{P}\right) \cong k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(V)_{*} \tag{1.1}
\end{equation*}
$$

where $I(V)_{*}$ is the ideal generated by the polynomials f_{*} and f_{*} is the homogeneous summand of $f \in I(V)$ of least degree. Thus, checking the CohenMacaulayness of the tangent cone of a variety at the origin is checking the Cohen-Macaulayness of the associated graded ring of the local ring of the variety at the origin with respect to the maximal ideal.

It is an important problem to discover, whether the associated graded ring of a local ring (R, \mathfrak{m}) with respect to its maximal ideal \mathfrak{m} is Cohen-Macaulay,
since this property assures a better control on the blow-up of $\operatorname{Spec}(R)$ along $V(\mathfrak{m})$. Moreover, the Cohen-Macaulaynes of the associated graded ring of a local ring with respect to the maximal ideal reduces the computation of the Hilbert function of a local ring to a computation of the Hilbert function of an Artin local ring [40]. The computation of the Hilbert function of an Artin ring is trivial, because it has a finite number of nonzero values.

We will study this problem for monomial curves. Our main interest is to check the Cohen-Macaulayness of the tangent cone of a monomial curve C, having parameterization

$$
\begin{equation*}
x_{1}=t^{n_{1}}, x_{2}=t^{n_{2}}, \cdots, x_{l}=t^{n_{l}} \tag{1.2}
\end{equation*}
$$

where $n_{1}, n_{2}, \cdots, n_{l}$ are positive integers. In other words, we are interested in the Cohen-Macaulayness of $g r_{\mathrm{m}}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ or $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}$. The semigroup ring $k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]$ shows the connection between a monomial curve and the additive semigroup generated by $n_{1}, n_{2}, \cdots, n_{l}$, which is denoted by $<n_{1}, n_{2}, \cdots, n_{l}>$ and is defined as

$$
\begin{equation*}
<n_{1}, n_{2}, \cdots, n_{l}>=\left\{n \mid n=\sum_{i=1}^{l} a_{i} n_{i}, a_{i} \in \mathbb{Z}_{\geq 0}\right\} \tag{1.3}
\end{equation*}
$$

where $\mathbb{Z}_{\geq 0}$ denotes the nonnegative integers. This makes monomial curves a meeting ground for geometric, algebraic, and arithmetical techniques. In literature, there are many results concerning the Cohen-Macaulayness of the tangent cone of a monomial curve, which depend on studying the semigroup ring $<n_{1}, n_{2}, \cdots, n_{l}>$. We prefer to study the problem by using the ring $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}$, since we have the tools to find the generators of $I(C)_{*}$ and to check the regularity of an element by using Gröbner theory.

Our main result is to show that in affine l-space with $l \geq 4$, the minimal number of generators $\mu\left(I(C)_{*}\right)$ of a Cohen-Macaulay tangent cone of a monomial curve can be arbitrarily large. In order to prove this result, we determine the generators of the defining ideals of infinitely many families of monomial curves which have Cohen-Macaulay tangent cones.

The associated graded ring with respect to the maximal ideal of a local ring (R, \mathfrak{m}) gives some measure of the singularity at $R[38]$. This is a consequence of the fact that $g r_{\mathrm{m}}(R)$ determines the Hilbert function of R. The Hilbert function of the local ring (R, \mathfrak{m}) is $H_{R}(n)=\operatorname{dim}_{R / \mathfrak{m}} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}$. Thus, we compute the Hilbert series and polynomials of the families of monomial curves.

We are also interested in genus computations by using the Hilbert polynomials for complete intersections in projective case and by using Riemann-Hurwitz
formula for complete intersection curves of superelliptic type.

In Chapter 2, we give the theory of monomial curves and mention the literature about monomial curves. We give the results about the generators of the defining ideals of monomial curves. We mention the connection between the semigroup $<n_{1}, n_{2}, \cdots, n_{l}>$ and a monomial curve, and naturally the famous Frobenius problem. Then we recall some open problems related with monomial curves. We also define tangent cone and prove some preparatory results.

In Chapter 3, we define the Cohen-Macaulayness and the significance of this property. We give two important checking criteria for the Cohen-Macaulayness of a graded ring.

In Chapter 4, we mention the importance of the problem of CohenMacaulayness of the tangent cone of a monomial curve, and discuss some entries from the vast literature about this problem. We first give a checking criteria for Cohen-Macaulayness of the tangent cone of a monomial curve (Theorem 4.4). We determine exactly the defining ideals of families of monomial curves (Proposition 4.10) and compute the generators of their tangent cones (Proposition 4.12). Our main theorem shows that all of these families of monomial curves have Cohen-Macaulay tangent cone at the origin (Theorem 4.7). This then proves our main claim.

In Chapter 5, we first find the Hilbert series and Hilbert polynomials of the families of monomial curves found in Chapter 4 by using the CohenMacaulayness of the tangent cone, see (5.2). We also make some genus computations by using Hilbert polynomials for complete intersections in the projective case (Theorem 5.2). Lastly, we make genus computations by using RiemannHurwitz formula for complete intersection curves of superelliptic type in the affine case (Theorem 5.10 and Corollary 5.11).

Chapter 2

Monomial Curves

The main geometric objects we are interested in are monomial curves. These curves are important since they provide a link between geometry, algebra and arithmetic. This is a consequence of the relationship between the monomial curves and semigroups generated by integers. The additive semigroup generated by $n_{1}, n_{2}, \cdots, n_{l}$ is denoted by $\left\langle n_{1}, n_{2}, \cdots, n_{l}\right\rangle$ and is defined as

$$
\begin{equation*}
<n_{1}, n_{2}, \cdots, n_{l}>=\left\{n \mid n=\sum_{i=1}^{l} a_{i} n_{i}, a_{i} \in \mathbb{Z}_{\geq 0}\right\} \tag{2.1}
\end{equation*}
$$

where $\mathbb{Z}_{\geq 0}$ denotes the nonnegative integers. A monomial curve C in affine l-space \mathbb{A}^{l} has parameterization

$$
\begin{equation*}
x_{1}=t^{n_{1}}, x_{2}=t^{n_{2}}, \cdots, x_{l}=t^{n_{l}} \tag{2.2}
\end{equation*}
$$

where $n_{1}, n_{2}, \cdots, n_{l}$ are positive integers with $\operatorname{gcd}\left(n_{1}, n_{2}, \cdots, n_{l}\right)=1$ and $\left\{n_{1}, n_{2}, \cdots, n_{l}\right\}$ is a minimal generator set for $\left.<n_{1}, n_{2}, \cdots, n_{l}\right\rangle$. The defining ideal $I(C) \subset k\left[x_{1}, x_{2}, \cdots, x_{l}\right]$ (where k is a field) is the prime ideal defined as

$$
\begin{equation*}
I(C)=\left\{f\left(x_{1}, x_{2}, \cdots, x_{l}\right) \in k\left[x_{1}, x_{2}, \cdots, x_{l}\right] \mid f\left(t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right)=0\right\} \tag{2.3}
\end{equation*}
$$

where t is transcendental over k. The obvious isomorphism with x_{i} mapped to $t^{n_{i}}$ for $1 \leq i \leq l$

$$
\begin{equation*}
k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C) \cong k\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right] \tag{2.4}
\end{equation*}
$$

shows the relationship between the monomial curve and the semigroup. This isomorhism leads to isomorphism of local rings,

$$
\left(k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)\right)_{\left(x_{1}, x_{2}, \cdots, x_{l}\right)} \cong k\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]_{\left(t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right)}
$$

and the completions of the local rings give

$$
\begin{equation*}
k\left[\left[x_{1}, x_{2}, \cdots, x_{l}\right]\right] / I(C) \cong k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right] . \tag{2.5}
\end{equation*}
$$

2.1 Generators of $I(C)$

Herzog, in his paper [21] on generators and relations of abelian semigroups and semigroup rings studies the relations of finitely generated abelian semigroups and he shows that $I(C)$ is generated by binomials $F(\nu, \mu)$ of the form

$$
\begin{equation*}
F(\nu, \mu)=x_{1}^{\nu_{1}} x_{2}^{\nu_{2}} \cdots x_{l}^{\nu_{l}}-x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \cdots x_{l}^{\mu_{l}}, \quad \sum_{i=1}^{l} \nu_{i} n_{i}=\sum_{i=1}^{l} \mu_{i} n_{i} \tag{2.6}
\end{equation*}
$$

with $\nu_{i} \mu_{i}=0,1 \leq i \leq l$. Herzog's proof is as follows with some slight modification.

Proposition 2.1 [21, Proposition 1.4] $I(C)=(\{F(\nu, \mu)\})$.

Proof: Let $J=(\{F(\nu, \mu)\})$. $J \subset I(C)$ is trivial. To prove the converse part, we grade the polynomial ring $k\left[x_{1}, x_{2}, \cdots, x_{l}\right]$ with $\operatorname{deg} x_{i}=n_{i}$ so that the map $\varphi: k\left[x_{1}, x_{2}, \cdots, x_{l}\right] \rightarrow k\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]$ satisfying $\varphi\left(x_{i}\right)=t^{n_{i}}$ is a homogeneous homomorphism of degree 0 . Let $f \in I(C)$ be a polynomial of degree d with respect to the defined grading. Then $f=\sum_{i=1}^{m} k_{i} x_{1}^{\nu_{i 1}} x_{2}^{\nu_{i 2}} \cdots x_{l}^{\nu_{i l}}$ such that $n_{1} \nu_{i 1}+n_{2} \nu_{i 2}+\cdots+n_{l} \nu_{i l}=d$ and since $f \in I(C), \varphi(f)=\sum_{i=1}^{m} k_{i} t^{d}=0$ and $\sum_{i=1}^{m} k_{i}=0$. Thus,

$$
\begin{aligned}
f & =\left(\sum_{i=1}^{m-1} k_{i} x_{1}^{\nu_{i 1}} x_{2}^{\nu_{i 2}} \cdots x_{l}^{\nu_{i l}}\right)+k_{m} x_{1}^{\nu_{m 1}} x_{2}^{\nu_{m 2}} \cdots x_{l}^{\nu_{m l}} \quad\left(k_{m}=-\sum_{i=1}^{m-1} k_{i}\right) \\
& =\sum_{i=1}^{m-1} k_{i}\left(x_{1}^{\nu_{11}} x_{2}^{\nu_{i 2}} \cdots x_{l}^{\nu_{l i}}-x_{1}^{\nu_{m 1}} x_{2}^{\nu_{m 2}} \cdots x_{l}^{\nu_{m l}}\right)
\end{aligned}
$$

This proves that every $f \in I(C)$ is generated by $F(\nu, \mu)$'s.

By using this proposition Bresinsky gives the following method for checking whether a given set of polynomials $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ generates $I(C)$ [8]. If it can be shown that for all $F(\nu, \mu) \in I(C)$, there is an element $f \in\left(f_{1}, f_{2}, \cdots, f_{n}\right)$ such that $F(\nu, \mu)-f=\left(\prod_{i=1}^{l} x_{i}^{a_{i}}\right) g$ with $g=0$ or $g=F\left(\nu^{\prime}, \mu^{\prime}\right)$ with $\partial\left(F\left(\nu^{\prime}, \mu^{\prime}\right)\right)<\partial(F(\nu, \mu))$, then $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ generate $I(C)$. Here $\partial(F(\nu, \mu))$ is defined to be $\partial(F(\nu, \mu))=\sum_{i=1}^{l} \nu_{i} n_{i}=\sum_{i=1}^{l} \mu_{i} n_{i}$. This proves that any binomial $F(\nu, \mu)$ can be generated by $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$. Thus, $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$
is a generator set for $I(C)$, since $F(\nu, \mu)$'s also generate $I(C)$. Bresinsky uses this technique to show that in affine l-space with $l \geq 4$, there are monomial curves having arbitrary large finite minimal sets of generators for the defining ideals [8]. He works with the monomial curves in affine 4 -space with $n_{1}=q_{1} q_{2}$, $n_{2}=q_{1} d_{1}, n_{3}=q_{1} q_{2}+d_{1}, n_{4}=q_{2} d_{1}$ where q_{2} is even and $q_{2} \geq 4, q_{1}=q_{2}+1$ and $d_{1}=q_{2}-1$. He shows that the number of the generators of the defining ideal of a monomial curve satisfying these conditions is greater than or equal to q_{2}. Thus, for arbitrary large q_{2}, we have arbitrary large number of generators. He also extends this result to higher dimensions.

Before we finish this section, we want to mention the relation between the symmetric semigroups and the number of generators of the defining ideals of corresponding monomial curves in affine 3 -space and 4 -space. Thus, we need more information about semigroups. It is well known that for a semigroup $<$ $n_{1}, n_{2}, \cdots, n_{l}>$ with $\operatorname{gcd}\left(n_{1}, n_{2}, \cdots, n_{l}\right)=1$, there is an integer c not contained in the semigroup such that every integer greater than c is in the semigroup. This number $c=\max \left\{\mathbb{Z}-<n_{1}, n_{2}, \cdots, n_{l}>\right\}$ is also known as the Frobenius number. An integer $n \in<n_{1}, n_{2}, \cdots, n_{l}>, 0 \leq n<c$ is called a nongap, and an integer $n \notin<n_{1}, n_{2}, \cdots, n_{l}>, 0 \leq n \leq c$ is called a gap [10]. The semigroup $<n_{1}, n_{2}, \cdots, n_{l}>$ is symmetric if and only if the number of gaps is equal to the number of nongaps. In [25], Kunz gives a beautiful algebraic characterization of symmetric semigroups by showing that $<n_{1}, n_{2}, \cdots, n_{l}>$ is symmetric if and only if $k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]$ is Gorenstein. By using the notions of system of parameters and irreducible ideal, a quick definition of a Gorenstein local ring can be given as follows.

Definition 2.2 [4] Let (R, \mathfrak{m}) be a local ring of dimension d. Any d-element set of generators of an \mathfrak{m}-primary ideal is called a system of parameters of the local ring (R, \mathfrak{m}).

Definition 2.3 [4] A proper ideal which cannot be expressed as an intersection of two ideals properly containing it is called as an irreducible ideal.

Definition 2.4 A local ring (R, \mathfrak{m}) is Gorenstein if and only if every system of parameters of the ring R generates an irreducible ideal.

In our case, $R=k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]$ and it has dimension 1 . Thus, R is Gorenstein, if every principal ideal (r) generated by an element $r \in R$ with $\sqrt{(r)}=\left(t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right)$ is irreducible. In fact, we can define a Gorenstein
ring as a Cohen-Macaulay ring, which has a set of parameters generating an irreducible ideal, and Cohen-Macaulayness is the subject of the next chapter.

Herzog shows that for a monomial curve C in (4.4) with $l=3$, the defining ideal $I(C)$ has 2 generators if and only if the semigroup $<n_{1}, n_{2}, n_{3}>$ is symmetric [21]. Bresinsky shows that for a monomial curve C in (4.4) with $l=4$, if $<n_{1}, n_{2}, n_{3}, n_{4}>$ is symmetric, then $I(C)$ is generated by 3 or 5 elements [9]. For higher dimensions, it is still an open question whether symmetry always implies the existence of a finite upper bound for the number of generators of the defining ideal of a monomial curve. Bresinsky has some results for the monomial curves in affine 5 -space [10].

2.2 Frobenius Problem and Monomial Curves

For a semigroup $<n_{1}, n_{2}, \cdots, n_{l}>$ with $\operatorname{gcd}\left(n_{1}, n_{2}, \cdots, n_{l}\right)=1$, finding the Frobenius number c (largest integer that is not contained in the semigroup) is a very important problem. It is also known as Frobenius's Money Change Problem or the Coin Problem. The Frobenius problem has a solution in closed form for $l=2, c=n_{1} n_{2}-n_{1}-n_{2}$. For $n>2$, there are no known solutions in closed form. There is a vast literature about this problem. Heap and Lynn were the first to give a general algorithm [19]. In [41], Sertöz and Özlük, and in [28], Lewin proposed algorithms with different approaches. For more information about the literature, see [1]. Curtis showed that no "reasonable" closed formula is possible [14].

Morales gives an algorithmic algebraic solution for the Frobenius problem [34]. He first makes the observation that the Frobenius number of the semigroup $<n_{1}, n_{2}, \cdots, n_{l}>$ is the index of regularity of the Hilbert function of the ring $A=k\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]$. Hilbert function of the ring $A=k\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]$ is $H(n)=\operatorname{dim}_{k} A_{n}$, where A_{n} denotes the set of homogeneous elements of A of degree n and thus $H(n)$ is either 0 or 1 . Considering $A \cong k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)$ as a quotient of the weighted polynomial ring $R=k\left[x_{1}, x_{2}, \cdots, x_{l}\right]$ with deg $x_{i}=n_{i}$, as an R-module A has syzgies (i.e. free resolution)

$$
\begin{equation*}
0 \rightarrow \oplus_{i} R\left[-n_{l-1, i}\right] \rightarrow \oplus_{i} R\left[-n_{l-2, i}\right] \rightarrow \cdots \rightarrow R \rightarrow A \rightarrow 0 \tag{2.7}
\end{equation*}
$$

where $R[-d]$ is called a twist of R, and $R[-d]_{j}=R_{j-d}$. Morales gives the formula for the Frobenius problem by using this resolution,

$$
\begin{equation*}
c=\max _{i}\left\{n_{l-1, i}\right\}-\sum_{i=1}^{l} n_{i} . \tag{2.8}
\end{equation*}
$$

Example 2.5 Let C be the monomial curve

$$
x_{1}=t^{6}, x_{2}=t^{7}, x_{3}=t^{8}, x_{4}=t^{9} .
$$

From our computations with Macaulay [6], the defining ideal $I(C)=\left(x_{3}^{2}-\right.$ $\left.x_{2} x_{4}, x_{2} x_{3}-x_{1} x_{4}, x_{2}^{2}-x_{1} x_{3}, x_{1}^{3}-x_{4}^{2}\right)$ and $R / I(C)=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / I(C)$ with deg $x_{1}=6$, deg $x_{2}=7$, deg $x_{3}=8$ and deg $x_{4}=9$ has syzgies

$$
\begin{gathered}
0 \rightarrow R[-40] \oplus R[-41] \rightarrow R[-22] \oplus R[-23] \oplus R[-32] \oplus R[-33] \oplus R[-34] \rightarrow \\
R[-14] \oplus R[-15] \oplus R[-16] \oplus R[-18] \rightarrow R \rightarrow R / I(C) \rightarrow 0 .
\end{gathered}
$$

Thus, from the given formula

$$
c=41-(6+7+8+9)=11
$$

Indeed, $<6,7,8,9>=\left\{0,6,7,8,9,12+\mathbb{Z}_{\geq 0}\right\}$ and the largest integer not contained in $<6,7,8,9>$ is 11 .

2.3 Tangent Cone of a Monomial Curve at the Origin

Tangent cone of a variety at a point is a very important geometric object, which approximates the variety at this point. This gives local information especially when the point is singular. Thus, tangent cones are studied for the purpose of classifying singularities. The monomial curve given by (4.4) has a singular point at the origin if $n_{i}>1$ for all $1 \leq i \leq l$. Thus, the tangent cone of a monomial curve at the origin is important for understanding monomial curves.

Let $V=Z(I)$ be a variety in affine l-space \mathbb{A}^{l}, where I is a radical ideal, and let $P=(0, \cdots, 0)$ be a point of the variety. We denote by f_{*} the homogeneous summand of f of least degree. For example, for the polynomial $f=x^{2}-y^{2}+$ $x^{3}+x^{2} y$, we have $f_{*}=x^{2}-y^{2}$.

Definition 2.6 [31] Let I_{*} be the ideal generated by the polynomials f_{*} for $f \in I$. The geometric tangent cone $C_{P}(V)$ at P is $V\left(I_{*}\right)$, and the tangent cone is the pair $\left(V\left(I_{*}\right), k\left[x_{1}, \cdots, x_{l}\right] / I_{*}\right)$.

Definition 2.7 The minimal number of generators of I_{*} which is denoted by $\mu\left(I_{*}\right)$ is called the minimal number of generators of the tangent cone at the origin.

The associated graded ring of the coordinate ring $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(V)$ of a variety V with respect to the maximal ideal \mathfrak{m} makes it possible to study the tangent cone of the variety V at the origin in a different manner. The definition of the associated graded ring with respect to any ideal is as follows.

Definition 2.8 Let A be a ring and I be any ideal of A. The associated graded ring with respect to the ideal I is

$$
\begin{equation*}
g r_{I}(A)=\oplus_{i=0}^{\infty} I^{i} / I^{i+1}=(A / I) \oplus\left(I / I^{2}\right) \oplus \cdots \tag{2.9}
\end{equation*}
$$

We generally work with the associated graded ring of a local ring with respect to its maximal ideal. If a local ring is obtained from a ring by localizing it at one of its maximal ideals, then the associated graded ring of the ring with respect to this maximal ideal and the associated graded ring of the local ring with respect to its maximal ideal are isomorphic and this is the following proposition.

Proposition 2.9 [31, p72] Let A be any ring and \mathfrak{m} be any maximal ideal of A. If $B=A_{\mathfrak{m}}$ and $\mathfrak{n}=\mathfrak{m} B$, then $g r_{\mathfrak{n}}(B)=\oplus_{i=0}^{\infty} \mathfrak{n}^{i} / \mathfrak{n}^{i+1} \cong \oplus_{i=0}^{\infty} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$

Proof: We first prove that there is an isomorphism between $\mathfrak{m}^{r} / \mathfrak{m}^{k}$ and $\mathfrak{n}^{r} / \mathfrak{n}^{k}$ for all integers r, k, with $0 \leq r<k$, from which the proposition follows immediately. Let $\varphi_{k}: A \rightarrow A_{\mathfrak{m}} / \mathfrak{n}^{k}$ be the natural map such that for any $a \in A, \varphi_{k}(a)$ is the residue class of $\frac{a}{1}$ in $A_{\mathfrak{m}} / \mathfrak{n}^{k}$. Let us show that the map is surjective. Let $\frac{a}{s}$ be any element in $A_{\mathfrak{m}}$. Since \mathfrak{m} is maximal and $s \notin \mathfrak{m}$, we have $(s)+\mathfrak{m}=A$. Thus, $(s)+\mathfrak{m}^{k}=A$ because no maximal ideal contains both s and \mathfrak{m}^{k}. Then there exist $b \in A$ and $m \in \mathfrak{m}^{k}$ such that $b s+m=1$. This means that $\varphi_{k}(b)$ is $\frac{1}{s}$ and $\varphi_{k}(b a)=\frac{a}{s}$, which proves the surjectivity. Now it is time to find the kernel of this map. If $\varphi_{k}(a)$ is 0 in $A_{\mathfrak{m}} / \mathfrak{n}^{k}$, then $\frac{a}{1} \in \mathfrak{n}^{k}$, so that we have $a \in \mathfrak{m}^{k}$ and the kernel of the map is \mathfrak{m}^{k}. Thus, for all $k \in \mathbb{Z}_{\geq 0}$, the map

$$
\overline{\varphi_{k}}: A / \mathfrak{m}^{k} \rightarrow A_{\mathfrak{m}} / \mathfrak{n}^{k}
$$

is an isomorphism. By using this isomorphism and the exact commutative diagram:
we obtain the isomorphism between $\mathfrak{m}^{r} / \mathfrak{m}^{k}$ and $\mathfrak{n}^{r} / \mathfrak{n}^{k}$ for all integers r, k, with $0 \leq r<k$. This isomorphism proves the proposition.

Thus, if $V=Z(I)$ is a variety in affine l-space \mathbb{A}^{l}, where I is a radical ideal, and $P=(0, \cdots, 0)$ is a point of the variety, then $\mathcal{O}_{P}=$ $\left(k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I\right)_{\left(x_{1}, x_{2}, \cdots, x_{l}\right)}$ and from Proposition $2.9 g r_{\mathfrak{n}}\left(\mathcal{O}_{P}\right)=\oplus_{i=0}^{\infty} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$, where \mathfrak{m} is the maximal ideal in $k\left[x_{1}, \cdots, x_{l}\right] / I$ corresponding to P and $\mathfrak{n}=\mathfrak{m} \mathcal{O}_{P}$. With this notation, the following proposition gives the relationship between tangent cone and the associated graded ring with respect to the maximal ideal of the local ring of V at P.

Proposition 2.10 [31] The map $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I_{*} \rightarrow g r_{\mathfrak{n}}\left(\mathcal{O}_{P}\right)$ sending the class of x_{i} in $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I_{*}$ to the class of x_{i} in $g r_{\mathfrak{n}}\left(\mathcal{O}_{P}\right)$ is an isomorphism.

Proof: \mathfrak{m} is the maximal ideal in $k\left[x_{1}, \cdots, x_{n}\right] / I$ corresponding to $P=$ $(0,0, \cdots, 0)$. Then from Proposition 2.9,

$$
\begin{aligned}
g r_{\mathfrak{n}}\left(\mathcal{O}_{P}\right) & =\sum_{i=0}^{\infty} \mathfrak{m}^{i} / \mathfrak{m}^{i+1} \\
& =\sum_{i=0}^{\infty}\left(x_{1}, x_{2}, \cdots, x_{l}\right)^{i} /\left(x_{1}, x_{2}, \cdots, x_{l}\right)^{i+1}+I \cap\left(x_{1}, x_{2}, \cdots, x_{l}\right)^{i} \\
& =\sum_{i=0}^{\infty}\left(x_{1}, x_{2}, \cdots, x_{l}\right)^{i} /\left(x_{1}, x_{2}, \cdots, x_{l}\right)^{i+1}+I_{i}
\end{aligned}
$$

where I_{i} is the homogeneous piece of I_{*} of degree i (namely, the subspace of I_{*} consisting of homogeneous polynomials of degree i). But

$$
\begin{gathered}
\left(x_{1}, x_{2}, \cdots, x_{l}\right)^{i} /\left(x_{1}, x_{2}, \cdots, x_{l}\right)^{i+1}+I_{i}=i^{t h} \text { homogeneous piece of } \\
k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I_{*} .
\end{gathered}
$$

Let C be the monomial curve given in (4.4). From (2.4), we have $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C) \cong k\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]$, and if \mathcal{O}_{P} is the local ring at the origin, then from (2.5) $\widehat{\mathcal{O}_{P}} \cong k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]$. Let \mathfrak{m} denote both the maximal ideal of the local ring \mathcal{O}_{P} and the maximal ideal of the local ring $\widehat{\mathcal{O}_{P}}$.

By using the properties of completion [17, p195] and proposition (2.10)

$$
\begin{equation*}
g r_{\mathfrak{m}}\left(\mathcal{O}_{P}\right) \cong g r_{\mathfrak{m}}\left(\widehat{\mathcal{O}_{P}}\right) \cong g r_{\mathfrak{m}}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right) \cong k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*} . \tag{2.10}
\end{equation*}
$$

This isomorphism shows that the tangent cone of a monomial curve at the origin can both be studied by using the ring $g r_{\mathfrak{m}}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ or the ring $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}$.

Chapter 3

Cohen-Macaulayness

Cohen-Macaulayness is a very important property, which makes it possible to have connections between geometry, algebra, combinatorics and homology. In general, it is important to know whether the local ring of a variety at a point is Cohen-Macaulay, because these properties can give some rough classification of singularities (Gorenstein singularities, normal singularities, etc.) and also varieties all of whose local rings are Cohen-Macaulay have some special properties [26, p190]. To support our interest in Cohen-Macaulay rings, we can quote Eisenbud [17, p447]:
> "These rings are important because they provide a natural context, broad enough to include the rings associated to many interesting classes of singular varieties and schemes, to which many results about regular rings can be generalized."

Vasconcelos makes a similar comment by expressing that although most of the Cohen-Macaulay rings are singular, their singularities may be said to be regular [43, p311].

Geometrically, Cohen-Macaulayness is also an important condition; if a local ring of a point P on a variety X is Cohen-Macaulay, then P cannot lie on two components of different dimensions, [17, p454].

Reminding that Cohen-Macaulay rings include rings of polynomials over a field, rings of formal power series over fields and convergent power series, Vasconcelos considers the Cohen-Macaulay rings as a meeting ground for algebraic, analytic and geometric techniques [43, p311]. Thus, Hochster is quite
right when he says "life is really worth living" in a Cohen-Macaulay ring [11, p56].

3.1 Definition and Significance

Cohen-Macaulay rings can be characterized in many different ways with different approaches. Vasconcelos mentions a theorem of Paul Roberts as one of the fastest definitions of a Cohen-Macaulay local ring, which says that a Noetherian local ring R is Cohen-Macaulay if and only if it admits a nonzero finitely generated module E of finite injective dimension [43, p311]. We prefer another definition which depends on depth and height of ideals in the ring. Thus, we need some definitions.

Definition 3.1 Let R be a ring. A regular sequence on R (or an R-sequence) is a set $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ of elements of R with the following properties:
i) $R \neq\left(a_{1}, a_{2}, \cdots, a_{n}\right) R$,
ii) The j th element a_{j} is not a zero-divisor on the ring $R /\left(a_{1}, a_{2}, \cdots, a_{j-1}\right) R$ for $j=1,2, \cdots, n$, where for $j=1$, we set $\left(a_{1}, a_{2}, \cdots, a_{j-1}\right)$ to be the zero ideal.

Remark 3.2 For a ring R, every definition and theorem in this section can be generalized to an R-module M, where $M=R$ is a special case, but we prefer giving the definitions and theorems only for R, since we are interested in rings.

The lengths of all the maximal R-sequences (where R is Noetherian) in an ideal I are the same, which is a result of the following theorem. The theorem uses the Koszul complex and homology of the Koszul complex. Thus, before the theorem, we recall the construction of Koszul complex.

Definition 3.3 [27, 852] Let R be a commutative ring and let $a_{1}, a_{2}, \cdots, a_{n} \in$ R. The Koszul complex $K(\underline{a} ; R)=K\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is defined as follows:

$$
\begin{aligned}
& K_{0}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=R \\
& K_{1}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\text { the free } R \text {-module } E \text { with basis }\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}
\end{aligned}
$$

$K_{p}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=$ the free R-module $\wedge^{p} E$ with basis $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}\right\}, i_{1}<$ $\cdots<i_{p}$;
$K_{n}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=$ the free R-module $\wedge^{n} E$ of rank 1 with basis $e_{1} \wedge \cdots \wedge e_{r}$.
The boundary maps are defined by $d_{1}\left(e_{i}\right)=a_{i}$ and in general

$$
d_{p}: K_{p}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \rightarrow K_{p-1}\left(a_{1}, a_{2}, \cdots, a_{n}\right)
$$

by

$$
d_{p}\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}\right)=\sum_{j=1}^{p}(-1)^{j-1} a_{i_{j}} e_{i_{1}} \wedge \cdots \wedge \widehat{e_{i_{j}}} \wedge \cdots \wedge e_{i_{p}} .
$$

Since $d_{p-1} d_{p}=0$, we have a complex

$$
\begin{equation*}
0 \rightarrow K_{n}(\underline{a} ; R) \rightarrow \cdots \rightarrow K_{p}(\underline{a} ; R) \rightarrow \cdots \rightarrow K_{1}(\underline{a} ; R) \rightarrow R \rightarrow 0 . \tag{3.1}
\end{equation*}
$$

The p-th homology of the Koszul complex is $H^{p}\left(K(\underline{a} ; R)=\left(\operatorname{Kerd}_{p}\right) /\left(\operatorname{Imd}_{p+1}\right)\right.$.

Theorem 3.4 [43, p304] Let R be a Noetherian ring and $a_{1}, a_{2}, \cdots, a_{n}$ be elements in R. Let $K\left(a_{1}, \cdots, a_{n}\right)$ be the corresponding Koszul complex and let p be the largest integer for which $H_{p}\left(K\left(a_{1}, \cdots, a_{n}\right)\right) \neq 0$. Then every maximal R-sequence in $I=\left(a_{1}, \cdots, a_{n}\right) \subset R$ has length $n-p$.

Proof: See [43, p304].

This theorem gives us the opportunity to define the depth of an ideal of a Noetherian ring.

Definition 3.5 Let R be a Noetherian ring. The depth of an ideal I is the length of any maximal R-sequence in I.

Some mathematicians prefer to use the term "grade" instead of the depth of an ideal I, and they reserve the term "depth" for the depth of the maximal ideal of a local ring. We prefer to use "depth" in all cases.

Definition 3.6 Let R be a commutative ring, and \mathfrak{p} be a prime ideal. The height of \mathfrak{p} is the supremum of the lenths l of strictly descending chains

$$
\mathfrak{p}=\mathfrak{p}_{0} \supset \mathfrak{p}_{1} \supset \cdots \supset \mathfrak{p}_{l}
$$

of prime ideals. The height of any ideal I is the infimum of the heights of the prime ideals containing I.

In general, we have the inequalities

$$
\begin{equation*}
\operatorname{depth}(I) \leq \operatorname{height}(I) \leq \mu(I) \tag{3.2}
\end{equation*}
$$

where $\mu(I)$ is the minimal number of generators of I. The relation height $(I) \leq$ $\mu(I)$ is a direct consequence of Krull's theorem, see [4, p13]. For the proof of the relation depth $(I) \leq \operatorname{height}(I)$, see [4, p108].

We can now define a Cohen-Macaulay ring.

Definition 3.7 A Noetherian ring R is Cohen-Macaulay if $\operatorname{depth}(I)=\operatorname{height}(I)$ for each ideal I of R.

Proposition 3.8 [4, 113] Let R be a Noetherian ring. The following properties are equivalent.
i) R is a Cohen-Macaulay ring,
ii) for every maximal ideal \mathfrak{m} of R, depth $(\mathfrak{m})=\operatorname{height}(\mathfrak{m})$,
iii) for every prime ideal p of R, $\operatorname{depth}(\mathfrak{p})=\operatorname{height}(\mathfrak{p})$,
iii) for every ideal I of R, $\operatorname{depth}(I)=\operatorname{height}(I)$.

Proof: See [4, p114].

From this proposition, if R is a local ring, it is sufficient to test the equation depth $(\mathfrak{m})=\operatorname{height}(\mathfrak{m})$ for its maximal ideal. On a local ring R with maximal ideal \mathfrak{m}, $\operatorname{depth}(\mathfrak{m})=\operatorname{depth}(R)$ and height $(\mathfrak{m})=\operatorname{dim}(R)$ so that R is CohenMacaulay if and only if $\operatorname{depth}(R)=\operatorname{dim}(R)$. Let R be a Noetherian ring and \mathfrak{m} be any maximal ideal. What makes Cohen-Macaulayness a local property is the equality $\operatorname{depth}(\mathfrak{m})=\operatorname{depth}\left(R_{\mathfrak{m}}\right)$, which follows from the properties of Koszul complex.

3.2 Checking Criteria for Graded Rings

Being familiar with the notion of Cohen-Macaulayness, we can give some criteria for checking the Cohen-Macaulayness of graded rings, since in the next chapter, we will be interested in the Cohen-Macaulayness of some graded rings. We need some more definitions.

Definition 3.9 A graded ring is a ring A together with a direct sum decomposition

$$
A=A_{0} \oplus A_{1} \oplus A_{2} \oplus \cdots \text { as commutative groups }
$$

such that $A_{i} A_{j} \subset A_{i+j}$ for $i, j \geq 0$. Elements of A_{r} are called elements of degree r.

For the rest of this section, let us assume that $A_{0}=k$, where k is a field and A is a graded algebra generated over k by elements of degree 1 .

Definition 3.10 The numerical function $H_{A}(n)=\operatorname{dim}_{k}\left(A_{n}\right)$ for all $n \in \mathbb{Z}_{\geq 0}$ is called the Hilbert function of A, and $H_{A}(t)=\sum_{n \in \mathbb{Z}_{>0}} H_{A}(n) t^{n}$ is called the Hilbert series of A. The polynomial $P_{A}(n)$ satisfying $P_{A}(n)=H_{A}(n)$ for sufficiently large n is the Hilbert polynomial of A.

The existence of the Hilbert polynomial was shown by Hilbert, and we know more about the Hilbert polynomial.

Theorem 3.11 [43, p342] Let the graded ring A have dimenson d.
i) $H_{A}(t)=h_{A}(t) /(1-t)^{d}$, where $h_{A}(t)$ is a polynomial,
ii) the Hilbert polynomial $P_{A}(n)$ of A is of degree $d-1$ with leading coefficient $h_{A}(1) /(d-1)!$.

Proof: See [43, p342].

Definition 3.12 With this notation the multiplicity of a graded ring A is defined to be $h_{A}(1)$ and it is denoted by $e(A)$. The polynomial $h_{A}(t)$ is called the h-polynomial of A.

Definition 3.13 Let A be a graded ring of dimension d. A system of parameters for A is a set of homogeneous elements $a_{1}, \cdots, a_{d} \in A$ such that $\operatorname{dim} A /\left(a_{1}, \cdots, a_{d}\right)$ is 0.

First important criterion for checking the Cohen-Macaulayness of a graded ring is the following proposition.

Proposition 3.14 [43, p56] Suppose that a_{1}, \cdots, a_{d} is a homogeneous system of parameters for a graded ring A. Then A is a Cohen-Macaulay if and only if a_{1}, \cdots, a_{d} is a regular sequence. Moreover, if $a_{1}, a_{2}, \cdots, a_{d}$ are of degree 1 , and if $H_{A}(t)=\left(h_{0}+h_{1} t+\cdots+h_{r} t^{r}\right) /(1-t)^{d}$, then the polynomial $h_{0}+h_{1} t+\cdots+h_{r} t^{r}$ is the Hilbert series of the Artin ring $A /\left(a_{1}, \cdots, a_{d}\right)$. In particular, $h_{i} \geq 0$.

Proof: The first assertion can be proved by using the relation between the notion of flatness and Cohen-Macaulayness. The other assertions can be proved by using the exact sequence induced by an element of degree 1 which is regular on A,

$$
0 \rightarrow A(-1) \rightarrow A \rightarrow A /(z) \rightarrow 0
$$

which gives $H_{A /(z)}(t)=(1-t) H_{A}(t)$.

Vasconcelos also remarks that the condition $h_{i} \geq 0$ can be used as a pretest for Cohen-Macaulayness.

Another useful test for checking the Cohen-Macaulayness of a graded ring of the form $k\left[x_{1}, \cdots, x_{n}\right] / I$, where I is a homogeneous ideal is the following proposition.

Proposition 3.15 [6, p117] Let $A=k\left[x_{1}, \cdots, x_{n}\right] / I$, where I is a homogeneous ideal, and let $\operatorname{dim} A=d$. Then A is Cohen-Macaulay if and only if $e(A)=\operatorname{dim}_{k} A /\left(a_{1}, \cdots, a_{d}\right)$, for some (and hence all) system of parameters a_{1}, \cdots, a_{d} of degree 1 .

Proof: We adapt the proof of a similar condition for a local ring to the graded $\operatorname{ring} A$, see $[4, \mathrm{p} 117]$. Let A be Cohen-Macaulay ring and let a_{1}, \cdots, a_{d} be a system of parameters of degree 1. It follows from Proposition 3.14 that a_{1}, \cdots, a_{d} is a regular sequence. If a_{1}, \cdots, a_{d} is a regular sequence, then A is isomorphic to a polynomial ring $R\left[T_{1}, \cdots, T_{d}\right]$ with variables T_{1}, \cdots, T_{d} of degree 1 , and $R=A /\left(a_{1}, \cdots, a_{d}\right)$. This can be shown by considering the map $\varphi: R\left[T_{1}, \cdots, T_{d}\right] \rightarrow A$ with $\varphi\left(T_{i}\right)=a_{i}$ for $1 \leq i \leq d$. This is a map of homogeneous degree 0 and gives the isomorphism

$$
\left(A /\left(a_{1}, \cdots, a_{d}\right)\right)\left[T_{1}, \cdots, T_{d}\right] \cong A
$$

Then

$$
\begin{aligned}
\operatorname{dim}_{k}\left(A_{n}\right) & =\sum_{i=1}^{\operatorname{dim}_{k} A /\left(a_{1}, \cdots, a_{d}\right)}\binom{n-d_{i}+d-1}{d-1} \\
& =\left(\operatorname{dim}_{k} A /\left(a_{1}, \cdots, a_{d}\right)\right) \frac{n^{d-1}}{(d-1)!}+\cdots
\end{aligned}
$$

where d_{i} 's are degrees of the k-basis elements of $A /\left(a_{1}, \cdots, a_{d}\right)$. Hence, $e(A)=\operatorname{dim}_{k} A /\left(a_{1}, \cdots, a_{d}\right)$ follows immediately.

The converse part of the proof can be done with a similar approach. Let a_{1}, \cdots, a_{d} be a set of parameters of the ring A and let $q=\left(a_{1}, \cdots, a_{d}\right)$. We must show that a_{1}, \cdots, a_{d} is a regular sequence. Let $\varphi:(A / q)\left[T_{1}, \cdots, T_{d}\right] \rightarrow A$ be the map such that $\varphi\left(T_{i}\right)=a_{i}$ for $1 \leq i \leq d$. Let $J=\operatorname{Ker}(\varphi)$. We will show that if $J \neq 0, e(A)<\operatorname{dim}_{k} A / q$. If $J \neq 0$, then it contains at least one form of degree p. Consequently,

$$
\begin{aligned}
\operatorname{dim}_{k}\left(A_{n}\right) & \leq \sum_{i=1}^{\operatorname{dim}_{k} A / q}\binom{n-d_{i}+d-1}{d-1}-\binom{n-p+d-1}{d-1} \\
& =\left(\operatorname{dim}_{k} A / q-1\right) \frac{n^{d-1}}{(d-1)!}+\cdots
\end{aligned}
$$

From this equation, we obtain $e(A)<\operatorname{dim}_{k} A / q=\operatorname{dim}_{k} A /\left(a_{1}, \cdots, a_{d}\right)$, which is a contradiction. Thus, $J=0$ and a_{1}, \cdots, a_{d} is a regular sequence. Hence, A is a Cohen-Macaulay ring.

Chapter 4

Cohen-Macaulayness of the Tangent Cone

Our main interest is checking the Cohen-Macaulayness of the tangent cone of a monomial curve. In other words, we are interested in the Cohen-Macaulayness of the associated graded ring of the local ring of a monomial curve at the origin with respect to its maximal ideal. In general, it is an important problem to discover, whether the associated graded ring of a local ring (R, \mathfrak{m}) with respect to its maximal ideal \mathfrak{m} is Cohen-Macaulay, since this property assures a better control on the blow-up of $\operatorname{Spec}(R)$ along $V(\mathfrak{m})$. The blow-up of $\operatorname{Spec}(R)$ along $V(\mathfrak{m})$ is $\operatorname{Proj}(R[\mathfrak{m} t])$ and if the associated graded ring of R with respect to the maximal ideal $\mathfrak{m}\left(g r_{\mathfrak{m}}(R)\right)$ is Cohen-Macaulay, then $R[\mathfrak{m} t]$ is Cohen-Macaulay [20, p86]. Also, the exceptional divisor of the blow-up is nothing but the projective variety associated to the graded ring with respect to the maximal ideal $g r_{\mathfrak{m}}(R)$. For more information on the blow-up algebra, see[17, p148].

The associated graded ring with respect to the maximal ideal of a local ring (R, \mathfrak{m}) gives some measure of the singularity at $R[38]$. This is a consequence of the fact that $g r_{\mathfrak{m}}(R)$ determines the Hilbert function of R. The Hilbert function of the local ring (R, \mathfrak{m}) is $H_{R}(n)=\operatorname{dim} m_{R / \mathfrak{m}} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}$, in other words it is the dimension of the n-th component of $g r_{\mathfrak{m}}(R)$ as a vector space over R / \mathfrak{m}. The Hilbert function of R measures the deviation from a regular local ring [40]. Cohen-Macaulaynes of the associated graded ring of a local ring with respect to the maximal ideal reduces the computation of the Hilbert function of a local ring to a computation of the Hilbert function of an Artin local ring [40]. The computation of the Hilbert function of an Artin ring is trivial, because it has a finite number of nonzero values. To see how this reduction can be done, let
$\operatorname{gr}(\mathfrak{m})=\mathfrak{m} / \mathfrak{m}^{2} \oplus \mathfrak{m}^{2} / \mathfrak{m}^{3} \oplus \cdots$ be the maximal ideal of the associated graded ring $g r_{\mathfrak{m}}(R)$. If $g r(\mathfrak{m})$ contains a nonzero divisor, then it contains a homogeneous nonzero divisor $\bar{x} \in \mathfrak{m}^{t} / \mathfrak{m}^{t+1}$ for some $t \geq 1$ and multiplication by \bar{x} is a one-to-one vector space homomorphism of $\mathfrak{m}^{n} / \mathfrak{m}^{n+1}$ to $\mathfrak{m}^{n+t} / \mathfrak{m}^{n+t+1}$ for all $n \geq 0$. Thus, if x is any lifting of \bar{x} to R, then $g r_{\mathfrak{m}}(R) /(\bar{x}) \cong g r_{\mathfrak{m}}(R /(x))$, where $\operatorname{dim}(R /(x))=\operatorname{dim} R-1$. For the details of these arguments, see [38, Lemma 0.1]. If $g r_{\mathfrak{m}}(R)$ is Cohen-Macaulay and $\operatorname{dim} R=d$, then $\operatorname{gr}(\mathfrak{m})$ contains a regular sequence $\overline{x_{1}}, \cdots, \overline{x_{d}}$ of length d. By using the argument above, if x_{1}, \cdots, x_{d} are liftings of $\overline{x_{1}}, \cdots, \overline{x_{d}}$, then $g r_{\mathfrak{m}}(R) /\left(\overline{x_{1}}, \cdots, \overline{x_{d}}\right) \cong g r_{\mathfrak{m}}\left(R /\left(x_{1}, \cdots, x_{d}\right)\right)$. From Theorem 3.14, $H_{R}(t)=H_{R /\left(x_{1}, \cdots, x_{d}\right)}(t) /(1-t)^{d}$ where $H_{R}(t)$ is the Hilbert series of the ring R and $H_{R /\left(x_{1}, \cdots, x_{d}\right)}(t)$ is the Hilbert series of the Artin local $\operatorname{ring} R /\left(x_{1}, \cdots, x_{d}\right)$.

Thus, it is an important problem to discover which local rings have CohenMacaulay associated graded rings with respect to the maximal ideal. We will consider this problem for monomial curves.

4.1 Literature

In literature, there are some results considering the Cohen-Macaulayness of the associated graded ring $g r_{\mathfrak{m}}(R)$ of a local ring (R, \mathfrak{m}) having dimension d. In [37], Sally proves that $g r_{\mathfrak{m}}(R)$ is Cohen-Macaulay, if $\mu(\mathfrak{m})=d, d+1$ and $e(R)+d-1$, where $\mu(\mathfrak{m})$ is the minimal number of the generators of the maximal ideal \mathfrak{m} of R and $e(R)$ is the multiplicity of R. This result can be applied to Arf rings such that for any Arf ring (R, \mathfrak{m}) having dimension $1, g r_{\mathfrak{m}}(R)$ is CohenMacaulay because $e(R)=\mu(\mathfrak{m})$ for an Arf ring, [1] and [29]. Sally also shows that if (R, \mathfrak{m}) is a d-dimensional local Gorenstein ring and $\mu(\mathfrak{m})=d, d+1$, $e(R)+d-3$ or $e(R)+d-2$, then $g r_{\mathrm{m}}(R)$ is Cohen-Macaulay, see [39] and [40].

We are interested in the problem of checking the Cohen-Macaulayness of the tangent cone of a monomial curve C having parameterization

$$
\begin{equation*}
x_{1}=t^{n_{1}}, x_{2}=t^{n_{2}}, \cdots, x_{l}=t^{n_{l}} \tag{4.1}
\end{equation*}
$$

where $n_{1}<n_{2}<\cdots<n_{l}$ are positive integers with $\operatorname{gcd}\left(n_{1}, n_{2}, \cdots, n_{l}\right)=1$ and $\left\{n_{1}, n_{2}, \cdots, n_{l}\right\}$ is a minimal generator set for $\left\langle n_{1}, n_{2}, \cdots, n_{l}\right\rangle$. Let us recall the notation. $I(C)$ is the defining ideal of $C . I(C)_{*}$ is the ideal generated by the polynomials f_{*} for f in $I(C)$, where f_{*} is the homogeneous summand of f of least degree, and $\mu\left(I(C)_{*}\right)$ is the minimal number of generators of ideal $I(C)_{*}$ which is also called the tangent cone of the monomial curve C. The
isomorphism in (2.10) shown as a consequence of Proposition 2.10 makes it possible to study this problem both by considering the associated graded ring of $R=k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]$ with respect to the maximal ideal $\mathfrak{m}=\left(t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right)$ $\left(g r_{\mathfrak{m}}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)\right)$ or by considering the ring $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}$. In literature, generally $g r_{\mathrm{m}}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ is studied, because without the help of Gröbner theory, it is very difficult to find the generators of $I(C)_{*}$, but we prefer to study the ring $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}$ with the help of Gröbner theory.

Hironaka was the first, who introduced the concept of standard base in his famous paper, [23]. In our case, a set of generators f_{1}, \cdots, f_{t} of $I(C)$ is a standard base, if $f_{1 *}, \cdots, f_{t *}$ is a set of generators for $I(C)_{*}$. Herzog gives a characterization of the standard base by using the concept of super-regular sequence, and applies this characterization to monomial curves in order to obtain a checking criterion for the Cohen-Macaulayness of $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ [22]. In [18], Garcia obtains the same checking criterion by studying the semigroup $<n_{1}, n_{2}, \cdots, n_{l}>$. He considers the subsets $\Gamma(k) \subset<n_{1}, n_{2}, \cdots, n_{l}>$ defined as $\Gamma(k)=\left\{\sum_{i=1}^{l} a_{i} n_{i}\right.$ such that $a_{i} \in \mathbb{Z}_{\geq 0}$ and $\left.\sum_{i=1}^{l} a_{i} \geq k\right\}$, and he finds criteria for $\left.g r_{m}\left(k\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ to be Cohen-Macaulay in terms of the integers $n_{1}, n_{2}, \cdots, n_{l}$.

Cavaliere and Niesi also attack the same problem by studying the semigroup ring $k[S]$ where $S \subset \mathbb{N}^{2}$ is generated by $\left(n_{1}, 0\right),\left(n_{2}, n_{2}-n_{1}\right), \cdots,\left(n_{l}, n_{l}-\right.$ $\left.n_{1}\right),\left(0, n_{1}\right)$, [12]. This is a consequence of a theorem of Hochster which says that $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ is Cohen-Macaulay if and only if the Rees ring $A=\oplus_{i=-\infty}^{\infty} \mathfrak{m}^{i}$ is Cohen-Macaulay, see [24] and the isomorphism between the Rees ring A and $k[S]$. Cavaliere and Niesi give a simple criterion for the Cohen-Macaulyness of $k[S]$ and thus for the Cohen-Macaulyness of $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ by introducing the notion of standard basis for S. Molinelli and Tamone use this criterion to show that if $n_{1}, n_{2}, \cdots, n_{l}$ are arithmetic sequence, then $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ is Cohen-Macaulay, [32]. Recently, Molinelli, Patil and Tamone give a necessary and sufficient condition for $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ to be Cohen-Macaulay, if $n_{1}, n_{2}, \cdots, n_{l}$ is an almost arithmetic sequence, in other words n_{1}, \cdots, n_{l-1} is an arithmetic sequence. Thus, for the case of monomial space curves, they determine exactly when $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, t^{n_{3}}\right]\right]\right)$ is Cohen-Macaulay, [33]. In fact, Robbiano and Valla has determined before exactly when $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, t^{n_{3}}\right]\right]\right)$ is Cohen-Macaulay by using a more complex approach [36].

In [36], Robbiano and Valla give a characterization of standard bases, which relies on homological methods and is particularly useful while dealing with
determinantal ideals. They show that if $I=\left(f_{1}, \cdots, f_{t}\right)$, then f_{1}, \cdots, f_{t} is a standard base if and only if all the homogeneous syzygies of $f_{1 *}, \cdots, f_{t *}$ can be lifted through a suitable map to syzygies of f_{1}, \cdots, f_{t}. By using this theory with Herzog's [21] description of the defining ideals of monomial curves for $l=3$, they give a classification of these curves by their tangent cones at the origin. They prove that a monomial curve C having parameterization

$$
\begin{equation*}
x_{1}=t^{n_{1}}, x_{2}=t^{n_{2}}, x_{3}=t^{n_{3}} \tag{4.2}
\end{equation*}
$$

has Cohen-Macaulay tangent cone at the origin if and only if minimal number of generators of the tangent cone, that is $\mu\left(I(C)_{*}\right)$ is less than or equal to three.

Our main theorem may be considered as the generalization of Robbiano and Valla's investigation for all the higher dimensions. We investigate and show that in higher dimensions, minimal number of generators of a Cohen-Macaulay tangent cone of a monomial curve can be arbitrarily large. In other words, in l-space with $l>3$, there are monomial curves with arbitrarily large $\mu\left(I(C)_{*}\right)$ and still having Cohen-Macaulay tangent cones [3].

4.2 When is $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ CM?

In this section, we state and prove a theorem, which we use for checking the Cohen-Macaulayness of the tangent cone of a monomial curve C by considering the ideal $I(C)_{*}$. The theorem checks the Cohen-Macaulayness of the tangent cone of a monomial curve by using a Gröbner basis with respect to a special monomial order. The standard reference for material related to Gröbner theory is [13]. Here, we only give the definitions of leading term and reverse lexicographic order.

Definition 4.1 Let $f=\sum_{i} c_{i} x_{1}^{a_{1 i}} x_{2}^{a_{2 i}} \cdots x_{l}^{a_{l i}}$ be a nonzero polynomial in $k\left[x_{1}, x_{2}, \cdots, x_{l}\right]$. If for $i=i_{m}$ the l-tuple $\left(a_{1 i_{m}}, a_{2 i_{m}}, \cdots, a_{l i_{m}}\right)$ is maximum among the l-tuples $\left(a_{1 i}, a_{2 i}, \cdots, a_{l i}\right)$ with respect to a given monomial order and $c_{i_{m}} \neq 0$, then $c_{i_{m}} x_{1}^{a_{1 i_{m}}} x_{2}^{a_{2 i m}} \cdots x_{l}^{a_{l_{m}}}$ is defined as the leading term of f with respect to this monomial order and denoted as $\operatorname{in}(f)=c_{i_{m}} x_{1}^{a_{1 i_{m}}} x_{2}^{a_{2 i_{m}}} \cdots x_{l}^{a_{l_{m}}}$.

Definition 4.2 [13, p57] (Graded Reverse Lex Order) Let $\alpha, \beta \in\left(\mathbb{Z}_{\geq 0}\right)^{l}$. We say $\alpha>_{\text {grevex }} \beta$ if

$$
\sum_{i=1}^{n} \alpha_{i}>\sum_{i=1}^{n} \beta_{i}
$$

or if $\sum_{i=1}^{n} \alpha_{i}=\sum_{i=1}^{n} \beta_{i}$ and in $\left(\alpha_{1}-\beta_{1}, \cdots, \alpha_{l}-\beta_{l}\right)$, the right-most nonzero entry is negative.

Example 4.3 The leading term of the polynomial $f=2 x_{1} x_{2} x_{3}+5 x_{2}^{2} x_{1}+3 x_{2}^{2} x_{3}$ with respect to the graded reverse lexicographic order with $x_{3}>x_{2}>x_{1}$ is $3 x_{3} x_{2}^{2}$, because $x_{3} x_{2} x_{1}>x_{2}^{2} x_{1}$ as $(1-0,1-2,1-1)=(1,-1,0)$ and $x_{3} x_{2}^{2}>$ $x_{3} x_{2} x_{1}$ as $(1-1,2-1,0-1)=(0,1,-1)$.

Theorem 4.4 [3] Let C be a curve as in (4.1). Let g_{1}, \cdots, g_{s} be a minimal Gröbner basis for $I(C)_{*}$ with respect to a reverse lexicographic order that makes x_{1} the lowest variable, then $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ is Cohen-Macaulay if and only if $x_{1} \not \backslash \operatorname{in}\left(g_{i}\right)$ for $1 \leq i \leq s$, where in $\left(g_{i}\right)$ is the leading term of g_{i}.

The proof will be given after the following two lemmas.

Lemma 4.5 [5, Lemma 2.2] Let $I \subset k\left[x_{1}, \cdots, x_{l}\right]$ be a homogeneous ideal and consider reverse lexicographic order that makes x_{1} the lowest variable, then

$$
\begin{equation*}
I: x_{1}=I \Leftrightarrow i n(I): x_{1}=\operatorname{in}(I) \tag{4.3}
\end{equation*}
$$

where in (I) is the ideal generated by in (f) 's with $f \in I$.

Proof: See [5, Lemma 2.2].

Lemma $4.6 \operatorname{gr}_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ is Cohen-Macaulay if and only if $t^{n_{1}}$ is not a zero divisor in $\operatorname{gr} r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$.

Proof: It follows from the isomorphism (2.10)

$$
g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right) \cong k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*},
$$

that $t^{n_{1}}$ is not a zero divisor in $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ if and only if x_{1} is not a zero divisor in $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}$. For the graded ring $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}, x_{1}$ is a system of parameters, since the dimension
of the ring $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}$ is 1 , and the dimension of the ring $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] /\left(x_{1}, I(C)_{*}\right)$ is 0 (because $x_{2}^{a_{2}}, \cdots, x_{l}^{a_{l}}$ are all elements of $I(C)_{*}$ for some a_{2}, \cdots, a_{l}, since we have $x_{2}^{n_{1}}-x_{1}^{n_{2}}, x_{3}^{n_{1}}-x_{1}^{n_{3}}$ and $x_{4}^{n_{1}}-x_{1}^{n_{4}}$ in $I(C)$). From Proposition 3.14, $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}$ is Cohen-Macaulay if and only if x_{1} is regular, which proves the lemma.

We can now give the proof of our theorem which gives a checking criterion for the Cohen-Macaulayness of the tangent cone of a monomial curve.

Proof of Theorem 4.4: $t^{n_{1}}$ is not a zero divisor in $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ if and only if x_{1} is not a zero divisor in $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}$. Combining this with Lemma 4.5 and Lemma 4.6, $g r_{m}\left(k\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]$ is Cohen-Macaulay \Leftrightarrow $I(C)_{*}: x_{1}=I(C)_{*} \Leftrightarrow i n\left(I(C)_{*}\right): x_{1}=i n\left(I(C)_{*}\right)$ with respect to the reverse lexicographic order that makes x_{1} the lowest variable. From the definition of a minimal Grobner basis,

$$
i n\left(I(C)_{*}\right)=\left(i n\left(g_{1}\right), \cdots, i n\left(g_{s}\right)\right) \text { and } \operatorname{in}\left(g_{i}\right) \nmid \operatorname{in}\left(g_{j}\right) \text { if } i \neq j .
$$

Thus, $g r_{m}\left(k\left[\left[t^{n_{1}}, t^{n_{2}}, \cdots, t^{n_{l}}\right]\right]\right)$ is Cohen-Macaulay if and only if x_{1} does not divide $\operatorname{in}\left(g_{i}\right)$ for $1 \leq i \leq s$.

4.3 A family of monomial curves in l-space which have CM tangent cones

In this section, we check the Cohen-Macaulayness of the tangent cone of the monomial curves $C_{m}^{[l]}$ in affine l-space having the parameterization

$$
\begin{equation*}
x_{1}=t^{a_{1}}, x_{2}=t^{a_{2}}, \cdots, x_{l}=t^{a_{l}} \tag{4.4}
\end{equation*}
$$

where $a_{1}=2^{l-4} m(m+1), a_{2}=2^{l-4}(m(m+1)+1), a_{3}=2^{l-4}(m+1)^{2}$, $a_{4}=2^{l-4}\left((m+1)^{2}+1\right), a_{5}=2^{l-4}(m+1)^{2}+2^{l-5}$ and $a_{i}=2^{l-4}(m+1)^{2}+2^{l-5}+$ $\sum_{j=6}^{i}(-1)^{j} 2^{l-j}$ for $i \geq 6$, with $m \geq 2, l \geq 4$.

Our main result is the following theorem, which we prove at the end of this section.

Theorem 4.7 [3] The monomial curve $C_{m}^{[l]}$ having parameterization as in (4.4) has Cohen-Macaulay tangent cone at the origin, with $\mu\left(I\left(C_{m}^{[l]}\right)_{*}\right)=2 m+l-2$.

This theorem not only gives infinitely many families of monomial curves having Cohen-Macaulay tangent cone at the origin, but also shows that in each affine l-space with $l \geq 4$, there are monomial curves having Cohen-Macaulay tangent cone with arbitrarily large $\mu\left(I\left(C_{m}^{[l]}\right)_{*}\right)$. Our first aim is to give a complete description of the defining ideal $I\left(C_{m}^{[4]}\right)$.

Proposition 4.8 [3] The defining ideal $I\left(C_{m}^{[4]}\right)$ of the monomial curve $C_{m}^{[4]}$ is generated by $G_{m}^{[4]}=\left\{g_{i}=x_{1}^{m-i} x_{3}^{i+1}-x_{2}^{m-i+1} x_{4}^{i}\right.$ with $0 \leq i \leq m, f_{j}=$ $x_{3}^{j} x_{4}^{m-j}-x_{1}^{j+1} x_{2}^{m-j}$ with $0 \leq j \leq m$ and $\left.h=x_{1} x_{4}-x_{2} x_{3}\right\}$.

From Proposition 2.1, $I\left(C_{m}\right)$ is generated by binomials $F(\nu, \mu)$ of the form

$$
\begin{equation*}
F(\nu, \mu)=x_{1}^{\nu_{1}} \cdots x_{4}^{\nu_{4}}-x_{1}^{\mu_{1}} \cdots x_{4}^{\mu_{4}}, \quad \sum_{i=1}^{4} \nu_{i} n_{i}=\sum_{i=1}^{4} \mu_{i} n_{i} \tag{4.5}
\end{equation*}
$$

with $\nu_{i} \mu_{i}=0, \quad 1 \leq i \leq l, n_{1}=m(m+1), n_{2}=m(m+1)+1, n_{3}=(m+1)^{2}, n_{4}=$ $(m+1)^{2}+1$ and $\partial(F(\nu, \mu))$ is defined to be $\sum_{i=1}^{4} \nu_{i} n_{i}=\sum_{i=1}^{4} \mu_{i} n_{i}$.

Thus, we can prove the lemma by showing that for all $F(\nu, \mu)$, there is an element $f \in\left(f_{0}, f_{1}, \cdots, f_{m}, g_{0}, g_{1}, \cdots, g_{m}, h\right)$ such that $F(\nu, \mu)-f=\prod_{i=1}^{4} x_{i}^{a_{i}} g$ with $g=0$ or $g=F\left(\nu^{\prime}, \mu^{\prime}\right)$ with $\partial\left(F\left(\nu^{\prime}, \mu^{\prime}\right)\right)<\partial(F(\nu, \mu))$, since this proves that any binomial $F(\nu, \mu)$ can be generated by $\left\{f_{0}, f_{1}, \cdots, f_{m}, g_{0}, g_{1}, \cdots, g_{m}, h\right\}$.

Thus, the following lemma is crucial for our purpose, since it determines the polynomials $x_{i_{1}}^{\nu_{i_{1}}}-x_{i_{2}}^{\nu_{i_{2}}} x_{i_{3}}^{\nu_{i_{3}}} x_{i_{4}}^{\nu_{i_{4}}}$ in $I\left(C_{m}^{[4]}\right)$ with $1 \leq i_{1}, i_{2}, i_{3}, i_{4} \leq 4$ and $\nu_{i_{1}}$ minimal. These polynomials $x_{i_{1}}^{\nu_{i_{1}}}-x_{i_{2}}^{\nu_{i_{2}}} x_{i_{3}}^{\nu_{i_{3}}} x_{i_{4}}^{\nu_{i_{4}}}$ with $\nu_{i_{1}}$ minimal are very useful for finding polynomials f satisfying $f \in\left(f_{0}, f_{1}, \cdots, f_{m}, g_{0}, g_{1}, \cdots, g_{m}, h\right)$ such that $F(\nu, \mu)-f=\prod_{i=1}^{4} x_{i}^{a_{i}} g$ with $g=0$ or $g=F\left(\nu^{\prime}, \mu^{\prime}\right)$ with $\partial\left(F\left(\nu^{\prime}, \mu^{\prime}\right)\right)<$ $\partial(F(\nu, \mu))$.

Lemma 4.9 [3] Let $n_{1}=m(m+1), n_{2}=m(m+1)+1, n_{3}=(m+1)^{2}, n_{4}=$ $(m+1)^{2}+1$ with $m \geq 2$. If $\nu_{i_{1}} n_{i_{1}} \in<n_{i_{2}}, n_{i_{3}}, n_{i_{4}}>$, with $1 \leq i_{1}, i_{2}, i_{3}, i_{4} \leq 4$ (all i_{k} 's are distinct), $\nu_{i_{1}}$ strictly positive and minimal, then $\nu_{1}=m+1, \nu_{2}=m+1$, $\nu_{3}=m, \nu_{4}=m$.

Proof. For $i_{1}=1$, we have the equation

$$
\begin{equation*}
\nu_{1} m(m+1)=\mu_{2}(m(m+1)+1)+\mu_{3}(m+1)^{2}+\mu_{4}\left((m+1)^{2}+1\right) \tag{4.6}
\end{equation*}
$$

which leads to

$$
\nu_{1} m(m+1)=(m+1)\left(\mu_{2} m+\mu_{3}(m+1)+\mu_{4}(m+1)\right)+\left(\mu_{2}+\mu_{4}\right)
$$

and $m+1 \mid \mu_{2}+\mu_{4}$ follows immediately. Thus, if either μ_{2} or $\mu_{4} \neq 0$, then $\mu_{2}+\mu_{4} \geq m+1$. Also, from (4.6),

$$
\nu_{1} m(m+1)>\mu_{2} m(m+1)+\mu_{3} m(m+1)+\mu_{4} m(m+1)
$$

we have $\nu_{1}>\mu_{2}+\mu_{3}+\mu_{4}$ and substituting $\mu_{2}+\mu_{4} \geq m+1$ in this inequality, we obtain $\nu_{1}>m+1$. If $\mu_{2}=\mu_{4}=0$, then $\mu_{3}=m$ and $\nu_{1}=m+1$. Thus, the minimal positive value for ν_{1} is $m+1$ and we have $(m+1) n_{1}=m n_{3}$.

For $i_{1}=2$, we have the equation

$$
\begin{equation*}
\nu_{2}(m(m+1)+1)=\mu_{1} m(m+1)+\mu_{3}(m+1)^{2}+\mu_{4}\left((m+1)^{2}+1\right) \tag{4.7}
\end{equation*}
$$

which leads to

$$
\nu_{2} m(m+1)+\nu_{2}-\mu_{4}=(m+1)\left(\mu_{1} m+\mu_{3}(m+1)+\mu_{4}(m+1)\right)
$$

from which, $\nu_{2}>\mu_{4}$ and $m+1 \mid \nu_{2}-\mu_{4}$ follow. Thus, $\nu_{2} \geq m+1$. Since $\nu_{2}=m+1, \mu_{1}=m, \mu_{3}=1$ and $\mu_{4}=0$ satisfy the equation (4.7), the minimal positive value for ν_{2} is $m+1$ and we have $(m+1) n_{2}=n_{1} m+n_{3}$.

For $i_{1}=3$, we have the equation

$$
\begin{equation*}
\nu_{3}(m+1)^{2}=\mu_{1} m(m+1)+\mu_{2}(m(m+1)+1)+\mu_{4}\left((m+1)^{2}+1\right) \tag{4.8}
\end{equation*}
$$

and $m+1 \mid \mu_{2}+\mu_{4}$ follows immediately. If either μ_{2} or $\mu_{4} \neq 0$, then $\mu_{2}+\mu_{4} \geq$ $m+1$. Thus,

$$
\begin{aligned}
\nu_{3}(m+1)^{2} & \geq \mu_{2}(m(m+1)+1)+\mu_{4}\left((m+1)^{2}+1\right) \\
& \geq\left(\mu_{2}+\mu_{4}\right)(m(m+1)+1) \\
& \geq(m+1)(m(m+1)+1)
\end{aligned}
$$

from which we obtain $\nu_{3}>m$. If $\mu_{2}=\mu_{4}=0$, then $\nu_{3}=m$ and $\mu_{1}=m+1$. Thus, the minimal positive value for ν_{3} is m and we have $m n_{3}=(m+1) n_{1}$.

For $i_{1}=4$, we have the equation

$$
\begin{equation*}
\nu_{4}\left((m+1)^{2}+1\right)=\mu_{1} m(m+1)+\mu_{2}(m(m+1)+1)+\mu_{3}(m+1)^{2} \tag{4.9}
\end{equation*}
$$

If $\nu_{4}>\mu_{2}$, then $m+1 \mid \nu_{4}-\mu_{2}$ and $\nu_{4} \geq m+1$. If $\nu_{4}=\mu_{2}$, then $\nu_{4}=$ $\mu_{1} m+\mu_{3}(m+1)$ and $\nu_{4} \geq m$. Otherwise, if $\nu_{4}<\mu_{2}$, then by substituting $\mu_{2}=\nu_{4}+i$ with $i>0$, we have

$$
\nu_{4}(m+1)=\mu_{1} m(m+1)+i(m(m+1)+1)+\mu_{3}(m+1)^{2}
$$

and $\nu_{4}>m$. Since $\nu_{4}=m, \mu_{1}=1, \mu_{2}=m$ and $\mu_{3}=0$ satisfy the equation (4.9), the minimal positive value for ν_{4} is m and we have $m n_{4}=n_{1}+m n_{2}$.

From the equations $(m+1) n_{1}=m n_{3},(m+1) n_{2}=n_{1} m+n_{3}, m n_{3}=$ $(m+1) n_{1}$ and $m n_{4}=n_{1}+m n_{2}$ found in Lemma 4.9, we obtain the polynomials $x_{1}^{m+1}-x_{3}^{m}, x_{2}^{m+1}-x_{1}^{m} x_{3}, x_{3}^{m}-x_{1}^{m+1}$ and $x_{4}^{m}-x_{1} x_{2}^{m}$, which are the polynomials $-f_{m},-g_{0}, f_{m}$ and f_{0} in $G_{m}^{[4]}$. We can now prove Proposition 4.8.

Proof of Proposition 4.8: For any $F(\nu, \mu)$, if $\nu_{4}=\mu_{4}=0$, then $F(\nu, \mu) \in$ $I\left(C_{m}\right) \cap k\left[x_{1}, x_{2}, x_{3}\right]$. Since the semigroup $<m(m+1), m(m+1)+1,(m+1)^{2}>$ is symmetric, $I\left(C_{m}\right) \cap k\left[x_{1}, x_{2}, x_{3}\right]=\left(g_{0}, f_{m}\right) \subset\left(f_{0}, f_{1}, \cdots, f_{m}, g_{0}, g_{1}, \cdots, g_{m}, h\right)$ from [21]. Thus, consider the binomials $F(\nu, \mu)$ with $\nu_{4} \neq 0$:

1. If exactly one $\nu_{i}=0$: i) $\nu_{1}=0$ then $f=x_{1}^{\mu_{1}-(m+1)} f_{m}$, ii) $\nu_{2}=0$ then $f=x_{2}^{\mu_{2}-(m+1)} g_{0}$, iii) $\nu_{3}=0$ then $f=-x_{3}^{\mu_{3}-m} f_{m}$
2. $\nu_{1}=\nu_{2}=\nu_{3}=0$ then $\nu_{4} \geq m$, i) $\mu_{1}=\mu_{2}=0$ then $\mu_{3} \geq m$ and $f=x_{4}^{\nu_{4}-m} f_{0}-x_{3}^{\mu_{3}-m} f_{m}$, ii) μ_{1} or $\mu_{2} \neq 0$ then $f=x_{4}^{\nu_{4}-m} f_{0}$
3. i) $\nu_{2}=\nu_{3}=0, \nu_{1} \neq 0$ then $f=x_{1}^{\nu_{1}-1} x_{4}^{\nu_{4}-1} h$
ii) $\nu_{1}=\nu_{2}=0, \nu_{3} \neq 0$: If $\mu_{1}=0$, then $f=x_{2}^{\mu_{2}-(m+1)} g_{0}$. Otherwise, if $\nu_{4} \geq m$, we have $f=x_{3}^{\nu_{3}} x_{4}^{\nu_{4}-m} f_{0}$, and if $\nu_{3} \geq m$, we have $f=x_{3}^{\nu_{3}-m} x_{4}^{\nu_{4}} f_{m}$. The only remaining case is $\nu_{4}, \nu_{3}<m$. Assume that $\nu_{4}<\mu_{2}$. With this assumption, the equation

$$
\begin{equation*}
\nu_{3}(m+1)^{2}+\nu_{4}\left((m+1)^{2}+1\right)=\mu_{1} m(m+1)+\mu_{2}(m(m+1)+1) \tag{4.10}
\end{equation*}
$$

gives $\mu_{2}=\nu_{4}+k(m+1)$ where $k \geq 1$. Substituting this in the equation (5.3) and simplifying, we obtain

$$
\begin{equation*}
\nu_{3}(m+1)+\nu_{4}=\mu_{1} m+k(m(m+1)+1) \tag{4.11}
\end{equation*}
$$

But this equation gives

$$
\begin{aligned}
\nu_{3}+\nu_{4} & =\mu_{1} m+k(m(m+1)+1)-\nu_{3} m \\
& >m+(m(m+1)+1)-(m-1) m>2 m-2
\end{aligned}
$$

which is a contradiction since $\nu_{3}, \nu_{4}<m$. Thus, $\nu_{4} \geq \mu_{2}$. From equation (5.3), $(m+1) \mid \nu_{4}-\mu_{2}$ so that $\nu_{4}=\mu_{2}$. Substituting $\nu_{4}=\mu_{2}$ in equation (5.3), we obtain

$$
\mu_{1} m-\nu_{3} m=\nu_{3}+\nu_{4}
$$

which gives $m \mid \nu_{3}+\nu_{4}$. Thus, $f=f_{j}$ for some j with $1 \leq j \leq m-1$. iii) $\nu_{1}=\nu_{3}=0, \nu_{2} \neq 0$ a) If $\nu_{4} \geq m$, then there are two cases: If $\mu_{1} \neq 0$, $f=x_{4}^{\nu_{4}-m} x_{2}^{\nu_{2}} f_{0}$. If $\mu_{1}=0$, then $\mu_{3} \geq m$ and $f=-x_{3}^{\nu_{3}-(m+1)}\left(x_{3} f_{m}+\right.$ $\left.x_{1} g_{0}\right)$. b) If $\nu_{2} \geq m+1$, then $f=-x_{4}^{\nu_{4}} x_{2}^{\nu_{2}-(m+1)} g_{0}$. c) If $\nu_{4}<m$, $\nu_{2}<m+1$, then from the equation

$$
\nu_{2}((m+1) m+1)+\nu_{4}\left((m+1)^{2}+1\right)=\nu_{1} m(m+1)+\nu_{3}(m+1)^{2}
$$

$m+1 \mid \nu_{2}+\nu_{4}$ and $\nu_{2}+\nu_{4}=m+1$. Thus, $f=g_{i}$ for some i with $1 \leq i \leq m-1$.

We can now give the description of the ideal $I\left(C_{m}^{[l]}\right)$ by induction.

Proposition 4.10 [3] The defining ideal $I\left(C_{m}^{[l]}\right)$ of the monomial curve $C_{m}^{[l]}$ with $l \geq 4$ is generated by

$$
\begin{gathered}
G_{m}^{[l]}=\left\{g_{i}=x_{1}^{m-i} x_{3}^{i+1}-x_{2}^{m-i+1} x_{4}^{i} \text { with } 0 \leq i \leq m, f_{j}=x_{3}^{j} x_{4}^{m-j}-x_{1}^{j+1} x_{2}^{m-j}\right. \\
\text { with } \left.0 \leq j \leq m, h=x_{1} x_{4}-x_{2} x_{3}, x_{5}^{2}-x_{4} x_{3}, \cdots, x_{l}^{2}-x_{l-1} x_{l-2}\right\}
\end{gathered}
$$

We need the following lemma of Morales in the proof.

Lemma 4.11 [35, Lemma 3.2] Let C be a curve having parameterization

$$
\begin{equation*}
x_{1}=\varphi_{1}(t), \cdots, x_{l-1}=\varphi_{l-1}(t), x_{l}=t^{a} \tag{4.12}
\end{equation*}
$$

where a is a positive integer and $\varphi_{i}(t) \in k[t]$ for $1 \leq i \leq l-1$. Let β be a positive integer such that $\operatorname{gcd}(a, \beta)=1$, and let \tilde{C} be the curve having parameterization

$$
\begin{equation*}
x_{1}=\varphi_{1}\left(t^{\beta}\right), \cdots, x_{l-1}=\varphi_{l-1}\left(t^{\beta}\right), x_{l}=t^{a} . \tag{4.13}
\end{equation*}
$$

For any $f\left(x_{1}, \cdots, x_{l}\right) \in k\left[x_{1}, \cdots, x_{l}\right]$, we denote by \tilde{f} the element $f\left(x_{1}, \cdots, x_{l-1}, x_{l}^{\beta}\right)$ and let f_{1}, \cdots, f_{s} be a set of generators for $I(C)$. Then $\tilde{f}_{1}, \cdots, \tilde{f}_{s}$ is a set of generators for $I(\tilde{C})$.

Proof: See [35, Lemma 3.2].

Proof of Proposition 4.10. We prove the proposition by induction. The $l=4$ case is given in Proposition 4.8. Now assume that the proposition is true for some $l \geq 4$ and that $I\left(C_{m}^{[l]}\right)$ has the given generator set. By a trivial computation, it is seen that $C_{m}^{[l+1]}$ has parameterization,

$$
\begin{equation*}
x_{1}=t^{2 a_{1}}, x_{2}=t^{2 a_{2}}, \cdots, x_{l}=t^{2 a_{l}}, x_{l+1}=t^{a_{l-1}+a_{l}} \tag{4.14}
\end{equation*}
$$

where a_{i} 's are as in 4.4.
Let C^{\prime} be the curve having the parameterization,

$$
\begin{equation*}
x_{1}=t^{a_{1}}, x_{2}=t^{a_{2}}, \cdots, x_{l}=t^{a_{l}}, x_{l+1}=t^{a_{l-1}+a_{l}} . \tag{4.15}
\end{equation*}
$$

Let $f \in I\left(C^{\prime}\right)$. Then $f\left(t^{a_{1}}, t^{a_{2}}, \cdots, t^{a_{l}}, t^{a_{l-1}+a_{l}}\right)=0$ and since any $f \in$ $k\left[x_{1}, x_{2}, \cdots, x_{l}, x_{l+1}\right]$ can be written as

$$
\begin{aligned}
f\left(x_{1}, \cdots, x_{l}, x_{l+1}\right) & =f\left(x_{1}, \cdots, x_{l}, x_{l+1}-x_{l-1} x_{l}+x_{l-1} x_{l}\right) \\
& =\left(x_{l+1}-x_{l-1} x_{l}\right) f_{1}\left(x_{1}, \cdots, x_{l}\right)+f_{2}\left(x_{1}, \cdots, x_{l}\right)
\end{aligned}
$$

$f\left(t^{a_{1}}, t^{a_{2}}, \cdots, t^{a_{l}}, t^{a_{l-1}+a_{l}}\right)=0$ implies $f_{2}\left(t^{a_{1}}, t^{a_{2}}, \cdots, t^{a_{l}}\right)=0$. Hence, any $f \in$ $I\left(C^{\prime}\right)$ can be written as $f=\left(x_{l+1}-x_{l-1} x_{l}\right) f_{1}+f_{2}$ with $f_{2} \in I\left(C_{m}^{[l]}\right)$. Thus, $I\left(C^{\prime}\right)$ is generated by the generator set $G_{m}^{[l]} \cup\left\{x_{l+1}-x_{l-1} x_{l}\right\}$.

Applying Lemma 4.11 with $C=C^{\prime}$ in (4.15), $\tilde{C}=C_{m}^{[l+1]}$ in (4.14) and $\beta=2, I\left(C_{m}^{[l+1]}\right)$ is generated by $G_{m}^{[l+1]}=G_{m}^{[l]} \cup\left\{x_{l+1}^{2}-x_{l-1} x_{l}\right\}$. Thus, the induction is completed.

Knowing the description of the ideal $I\left(C_{m}^{[l]}\right)$, it is possible to to compute a set of generators of $I\left(C_{m}^{[l]}\right)_{*}$ by using the following algorithm, known as the tangent cone algorithm [13, p.467]. We first find a generator set of $I\left(C_{m}^{[l]}\right)^{h} \subset$ $k\left[t, x_{1}, x_{2}, \cdots, x_{l}\right]$ which is the homogenization of $I\left(C_{m}^{[l]}\right)$. It can be found by homogenizing the elements of a Gröbner basis of $I\left(C_{m}^{[l]}\right)$ with respect to an any graded monomial order by using the homogenization variable t. From the obtained generator set of $I\left(C_{m}^{[l]}\right)^{h}$, another Gröbner basis G_{1}, \cdots, G_{s} is computed with respect to a monomial order, such that among monomials of the same total degree, any monomial involving t is greater than any monomial involving only $x_{1}, x_{2}, \cdots, x_{l}$. For example, lexicographic order with $t>x_{1}>$ $x_{2}>\cdots>x_{l}$ is such an order. Then $I\left(C_{m}^{[l]}\right)_{*}$ is generated by the homogeneous summands of the least degree of $G_{1}\left(1, x_{1}, . ., x_{l}\right), \cdots, G_{s}\left(1, x_{1}, \cdots, x_{l}\right)$.

Proposition $4.12[3] I\left(C_{m}^{[l]}\right)_{*}$ is generated by $\left(G_{m}^{[l]}\right)_{*}=\left\{g_{i}=x_{1}^{m-i} x_{3}^{i+1}-\right.$ $x_{2}^{m-i+1} x_{4}^{i}$ with $0 \leq i \leq m-1, f_{j}^{\prime}=x_{3}^{j} x_{4}^{m-j}$ with $0 \leq j \leq m, h=x_{1} x_{4}-x_{2} x_{3}$, $\left.x_{5}^{2}-x_{4} x_{3}, \cdots, x_{l}^{2}-x_{l-1} x_{l-2}\right\}$. In particular, $\mu\left(I\left(C_{m}^{[l]}\right)_{*}\right)=2 m+l-2$.

The proof is a direct application of the tangent cone algorithm with the following lemmas and will be given after the lemmas.

Lemma 4.13 [3] $G_{m}^{[l]}=\left\{g_{i}=x_{1}^{m-i} x_{3}^{i+1}-x_{2}^{m-i+1} x_{4}^{i}\right.$ with $0 \leq i \leq m, f_{j}=$ $x_{3}^{j} x_{4}^{m-j}-x_{1}^{j+1} x_{2}^{m-j}$ with $0 \leq j \leq m, h=x_{1} x_{4}-x_{2} x_{3}, x_{5}^{2}-x_{4} x_{3}, \cdots, x_{l}^{2}-$ $\left.x_{l-1} x_{l-2}\right\}$ is a Gröbner basis with respect to the graded lexicographic order with $x_{l}>x_{l-1}>\cdots>x_{4}>x_{2}>x_{3}>x_{1}$.

Proof. Let $G_{m}^{[l]}$ be denoted by G during the proof. For $i<j, S\left(g_{i}, g_{j}\right)=$ $x_{4}^{j-i} x_{3}^{i+1} x_{1}^{m-i}-x_{2}^{j-i} x_{1}^{m-j} x_{3}^{j+1}=x_{1}^{m-j} x_{3}^{i+1}\left(x_{1}^{j-i} x_{4}^{j-i}-x_{2}^{j-i} x_{3}^{j-i}\right)=\left(x_{4} x_{1}-x_{2} x_{3}\right) p_{1}$ which shows that $S\left(g_{i}, g_{j}\right) \rightarrow_{G} 0 . S\left(g_{i}, h\right)=x_{1}^{m-i+1} x_{3}^{i+1}-x_{2}^{m-i+2} x_{4}^{i-1} x_{3}=$ $x_{3} g_{i-1}$, so that $S\left(g_{i}, h\right) \rightarrow_{G} 0$. Also, $S\left(f_{i}, f_{j}\right)=x_{1}^{j-i} x_{3}^{i} x_{4}^{m-i}-x_{2}^{j-i} x_{3}^{j} x_{4}^{m-j}=$ $x_{3}^{i} x_{4}^{m-j}\left(x_{1}^{j-i} x_{4}^{j-i}-x_{2}^{j-i} x_{3}^{j-i}\right)=\left(x_{4} x_{1}-x_{2} x_{3}\right) p_{2}$. Thus, $S\left(f_{i}, f_{j}\right) \rightarrow_{G} 0$. $S\left(f_{i}, h\right)=x_{3}^{i} x_{4}^{m-i+1}-x_{2}^{m-i+1} x_{1}^{i} x_{3}=x_{3} f_{i-1}$, and $S\left(f_{i}, h\right) \rightarrow_{G} 0$. For $i<j$, $S\left(f_{i}, g_{j}\right)=x_{3}^{i+1} x_{1}^{j-i} f_{m}-x_{3}^{j} g_{m-j+i}$ which shows that $S\left(f_{i}, g_{j}\right) \rightarrow_{G} 0$, and the case $i \geq j$ is similar. Let $p_{j}=x_{j}^{2}-x_{j-1} x_{j-2}$ with $j \geq 5$. Then since $\operatorname{gcd}\left(p_{j}, f\right)=1$ for any $f \in G, S\left(p_{j}, f\right) \rightarrow_{G} 0$.

This lemma gives us the opportunity to obtain $I\left(C_{m}^{[l]}\right)^{h}$ by homogenizing the generators of $G_{m}^{[l]}$ so that $I\left(C_{m}^{[l]}\right)^{h}$ is generated by $\left(G_{m}^{[l]}\right)^{h}=\left\{g_{i}=x_{1}^{m-i} x_{3}^{i+1}-\right.$ $x_{2}^{m-i+1} x_{4}^{i}, 0 \leq i \leq m, f_{j}^{h}=t x_{3}^{j} x_{4}^{m-j}-x_{1}^{j+1} x_{2}^{m-j} 0 \leq j \leq m, h=x_{1} x_{4}-$ $\left.x_{2} x_{3}, x_{5}^{2}-x_{4} x_{3}, \cdots, x_{l}^{2}-x_{l-1} x_{l-2}\right\}$.

Lemma 4.14 [3] $\left(G_{m}^{[l]}\right)^{h}$ is a Gröbner basis with respect to the lexicographic order with $t>x_{l}>x_{l-1}>\cdots>x_{4}>x_{2}>x_{3}>x_{1}$.

Proof. Let $\left(G_{m}^{[l]}\right)^{h}$ be denoted by G^{h} during the proof. $S\left(g_{i}, g_{j}\right), S\left(g_{i}, h\right)$ and $S\left(f_{i}^{h}, f_{j}^{h}\right)=S\left(f_{i}, f_{j}\right) \rightarrow_{G^{h}} 0$ from Lemma 4.13. $S\left(f_{i}^{h}, g_{j}\right)=x_{1}^{m-j} x_{3}^{i+j+1-m} f_{m}^{h}+$ $x_{1}^{i+1} g_{i+j-m}$ for $j \geq m-i$. For $j<m-i, S\left(f_{i}^{h}, g_{j}\right)=x_{1}^{i+1} x_{2}^{m-i-j} g_{0}+x_{1}^{i+1} x_{3} f_{i+j}^{h}$. Thus, $S\left(f_{i}^{h}, g_{j}\right) \rightarrow_{G^{h}} 0$. For $i \neq m, S\left(f_{i}^{h}, h\right)=x_{2} f_{i+1}^{h}$ and $S\left(f_{i}^{h}, h\right) \rightarrow_{G^{h}} 0$, while $S\left(f_{m}^{h}, h\right) \rightarrow_{G^{h}} 0$, since $\operatorname{gcd}\left(i n\left(f_{m}^{h}\right)\right.$,in $\left.(h)\right)=1$. Let $p_{j}=x_{j}^{2}-x_{j-1} x_{j-2}$ with $j \geq 5$. Then since $\operatorname{gcd}\left(p_{j}, f\right)=1$ for any $f \in G^{h}, S\left(p_{j}, f\right) \rightarrow_{G^{h}} 0$

Proof of Proposition 4.12: According to the tangent cone algorithm, we must compute a Gröbner basis from $\left(G_{m}^{[l]}\right)^{h}$ with respect to a monomial order, such that among monomials of the same total degree, any monomial involving t is greater than any monomial involving only x_{1}, \cdots, x_{l}, which is done in Lemma 4.14. Again from the tangent cone algorithm, $I\left(C_{m}^{[l]}\right)_{*}$ is generated by $\left\{g_{i}=x_{1}^{m-i} x_{3}^{i+1}-x_{2}^{m-i+1} x_{4}^{i}\right.$ with $0 \leq i \leq m, f_{j}^{\prime}=x_{3}^{j} x_{4}^{m-j}$ with $0 \leq j \leq m$, $\left.h=x_{1} x_{4}-x_{2} x_{3}, x_{5}^{2}-x_{4} x_{3}, \cdots, x_{l}^{2}-x_{l-1} x_{l-2}\right\}$. Since g_{m} can be generated by f_{0}^{\prime} and f_{m}^{\prime}, we can give a minimal generator set $G_{m}^{[l]} *$ for $I\left(C_{m}\right)_{*}$ such that $G_{m}^{[l]} *=\left\{g_{i}=x_{1}^{m-i} x_{3}^{i+1}-x_{2}^{m-i+1} x_{4}^{i} 0 \leq i \leq m-1, f_{j}^{\prime}=x_{3}^{j} x_{4}^{m-j} 0 \leq j \leq m\right.$, $\left.h=x_{1} x_{4}-x_{2} x_{3}, x_{5}^{2}-x_{4} x_{3}, \cdots, x_{l}^{2}-x_{l-1} x_{l-2}\right\}$.

We can now prove Theorem 4.7.
Proof of Theorem 4.7: $I\left(C_{m}^{[l]}\right)_{*}$ is generated by $\left(G_{m}^{[l]}\right)_{*}$ which is also a minimal Gröbner basis with respect to the reverse lexicographic order with $x_{l}>\cdots>x_{4}>x_{2}>x_{3}>x_{1}\left(\right.$ Let $\left(G_{m}^{[l]}\right)_{*}$ be denoted by $G_{*} . S\left(f_{i}^{\prime}, f_{j}^{\prime}\right)=0$, $S\left(f_{j}^{\prime}, h\right) \rightarrow_{G_{*}} 0, S\left(g_{i}, h\right) \rightarrow_{G_{*}} 0, S\left(g_{i}, g_{j}\right) \rightarrow_{G_{*}} 0$ and $S\left(f_{i}^{\prime}, g_{j}\right) \rightarrow_{G_{*}} 0$. For any $f \in G_{*}$ and $p_{j}=x_{j}^{2}-x_{j-1} x_{j-2}$ with $\left.j \geq 5, S\left(p_{j}, f\right) \rightarrow_{G^{*}} 0\right)$. We can now apply Theorem 4.4. Since x_{1} does not divide $\operatorname{in}\left(g_{i}\right)=x_{2}^{m-i+1} x_{4}^{i}, 1 \leq i \leq m$, $\operatorname{in}\left(f_{j}^{\prime}\right)=x_{3}^{j} x_{4}^{m-j} 0 \leq j \leq m, \operatorname{in}(h)=x_{2} x_{3}$ and $\operatorname{in}\left(p_{j}\right)=x_{j}^{2}$ with $j \geq 2$, $k\left[x_{1}, \cdots, x_{l}\right] / I\left(C_{m}^{[l]}\right)_{*}$ is Cohen-Macaulay.

Theorem 4.7 shows that the monomial curve $C_{m}^{[l]}$, for which $\mu\left(I\left(C_{m}^{[l]}\right)_{*}\right)=$ $2 m+l-2$ has Cohen-Macaulay tangent cone, where $m \geq 2, l \geq 4$. Thus, there are monomial curves having not only Cohen-Macaulay tangent cones but also arbitrarily large minimal number of generators for the ideal defining the tangent cone in all affine l-spaces with $l \geq 4$.

Remark 4.15 (a) By the same approach, the monomial curves C_{n} having the parameterization

$$
\begin{equation*}
x_{1}=t^{n(n+1)+1}, x_{2}=t^{n(n+1)+2}, x_{3}=t^{(n+1)^{2}+1}, x_{4}=t^{(n+1)^{2}+2} \tag{4.16}
\end{equation*}
$$

with $n \geq 3$, can be shown to have Cohen-Macaulay tangent cones and $\mu\left(I\left(C_{n}\right)_{*}\right)=2 n+3$.
(b) By a similar approach, Bresinsky curves $C_{q_{2}}$, see [8], having the parameterization

$$
\begin{equation*}
x_{1}=t^{q_{1} q_{2}}, x_{2}=t^{q_{1} d_{1}}, x_{3}=t^{q_{1} q_{2}+d_{1}}, x_{4}=t^{q_{2} d_{1}} \tag{4.17}
\end{equation*}
$$

with $q_{1}=q_{2}+1, q_{2}$ even, $q_{2} \geq 4, d_{1}=q_{2}-1$ can also be shown to have CohenMacaulay tangent cones. The approach depends on checking that x_{4} is not a zero divisor in the associated graded ring by considering the generators $F(\nu, \mu)$, since the homogeneous summands of the least degree of $F(\nu, \mu)$'s generate the $I\left(C_{q_{2}}\right)_{*}$.

Chapter 5

Hilbert Functions and Genus Calculations

In the first section of this chapter, we will find the Hilbert series and Hilbert polynomials of the families of the monomial curves in (4.4). In the second section, we will make some genus computations by using Hilbert polynomials for complete intersections in the projective case, and in the last section we will make genus computations by using Riemann-Hurwitz formula for complete intersection curves of superelliptic type in the affine case.

5.1 Hilbert Series of $I\left(C_{m}^{[l]}\right)$

We want to compute the Hilbert series of $I\left(C_{m}^{[l]}\right)$ in (4.4). By the Hilbert series of $I\left(C_{m}^{[l]}\right)$, we mean the Hilbert series of the local ring $R=k\left[\left[t^{a_{1}}, t^{a_{2}}, \cdots, t^{a_{l}}\right]\right]$, where a_{i} 's are as in (4.4). The Hilbert function of the local ring (R, \mathfrak{m}) is $H_{R}(n)=\operatorname{dim}_{k} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}$, where $\mathfrak{m}=\left(t^{a_{1}}, t^{a_{2}}, \cdots, t^{a_{l}}\right)$. We have our famous isomorphism

$$
g r_{\mathfrak{m}}(R)=g r_{\mathfrak{m}}\left(k\left[\left[t^{a_{1}}, t^{a_{2}}, \cdots, t^{a_{l}}\right]\right]\right) \cong S=k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I\left(C_{m}^{[l]}\right)_{*}
$$

so that they have the same Hilbert function and Hilbert series.
From Theorem 4.7, $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I\left(C_{m}^{[l]}\right)_{*}$ is Cohen-Macaulay for $m \geq 2$, $l \geq 4$. We first compute the Hilbert series of $k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / I\left(C_{m}^{[4]}\right)_{*}$. Since $S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / I\left(C_{m}\right)_{*}$ is Cohen-Macaulay, from Proposition 3.14, S and
its Artinian reduction $S /\left(x_{1}\right)$ have the same h-polynomial. From Proposition 4.12, the generators of $I\left(C_{m}^{[l]}\right)_{*}$ is known, thus a direct computation shows that the Hilbert series $H_{m}^{[4]}(t)$ of the monomial curve C_{m} is given by

$$
\begin{equation*}
H_{m}(t)=\frac{\sum_{i=0}^{m-1}(2 i+1) t^{i}+m t^{m}}{1-t} \tag{5.1}
\end{equation*}
$$

We can now compute the Hilbert series of $S=k\left[x_{1}, \cdots, x_{l}\right] / I\left(C_{m}^{[l]}\right)_{*}$ for all $l \geq 5$. Since $G_{m_{*}}^{[l]}$ obtained in Proposition 4.12 is a Gröbner basis with respect to the reverse lexicographic order with $x_{l}>x_{l-1}>\cdots>x_{5}>x_{4}>$ $x_{2}>x_{3}>x_{1}, k\left[x_{1}, \cdots, x_{l}\right] / I\left(C_{m}^{[l]}\right)_{*}$ and $k\left[x_{1}, \cdots, x_{l}\right] / i n\left(G_{m_{*}}^{[l]}\right)$ have the same Hilbert series, where $\operatorname{in}\left(G_{m_{*}}^{[l]}\right)$ is the ideal generated by the leading terms of the elements of the generator set $G_{m_{*}}^{[l]}$ with respect to this order. (This is a well known result going back to the famous article of Macaulay [30].) We have $i n\left(G_{m}^{[l]} *\right)=\left(x_{2}^{m-i+1} x_{4}^{i} 0 \leq i \leq m-1, f_{j}^{\prime}=x_{3}^{j} x_{4}^{m-j} 0 \leq j \leq m, x_{2} x_{3}\right.$, $\left.x_{5}^{2}, \cdots, x_{l}^{2}\right)$. To compute the Hilbert series of $k\left[x_{1}, \cdots, x_{l}\right] / i n\left(G_{m_{*}}^{[l]}\right)$, we need the following proposition.

Proposition 5.1 [4, Proposition 2.4] Let $I \subset A=k\left[x_{1}, \cdots, x_{l}\right]$ be a monomial ideal. Suppose the variables x_{1}, \cdots, x_{l} can be partitioned into disjoint sets $V_{1} \cup$ $\cdots \cup V_{j}$ such that each generator of I belongs to subring $k\left[V_{i}\right]$ for some i. Define $I_{i}=I \cap k\left[V_{i}\right]$. Then

$$
H_{A / I}(t)=\prod_{i=1}^{j} H_{A / I_{i}}(t) .
$$

Proof: The proof is a consequence of the tensor product decomposition

$$
A / I=k\left[V_{1}\right] / I_{1} \otimes_{k} \cdots \otimes_{k} k\left[V_{j}\right] / I_{j}
$$

The ideal $\operatorname{in}\left(G_{m_{*}}^{[l]}\right)$ satisfies the assumptions of the above proposition. Thus, the Hilbert series $H_{m}^{[l]}(t)$ of the associated graded ring of the monomial curve $C_{m}^{[l]}$ for $l \geq 4$ is given by

$$
\begin{equation*}
H_{m}^{[l]}(t)=\frac{(1+t)^{l-4}\left(\sum_{i=0}^{m-1}(2 i+1) t^{i}+m t^{m}\right)}{1-t} \tag{5.2}
\end{equation*}
$$

From Definition 3.12, the multiplicity is the integer obtained by evaluating the h-polynomial at $t=1$. Thus, the monomial curve $C_{m}^{[l]}$ has multiplicity $2^{l-4} m(m+1)$. Moreover, the Hilbert polynomial of the monomial curve $C_{m}^{[l]}$ is also $2^{l-4} m(m+1)$.

5.2 Hilbert Polynomial of a Projective Complete Intersection

Let S denote the homogeneous coordinate ring, $k\left[x_{0}, \cdots, x_{n}\right]$ of \mathbb{P}_{k}^{n} where k is an algebraically closed field, usually \mathbb{C}. We assume that there are hypersurfaces H_{1}, \cdots, H_{r} of \mathbb{P}_{k}^{n} of degrees d_{1}, \cdots, d_{r} respectively such that $X_{r}=H_{1} \cap \cdots \cap$ H_{r} is a complete intersection. The hypersurfaces H_{1}, \cdots, H_{r} correspond to homogeneous polynomials $f_{1}, \cdots, f_{r} \in S$ of degrees d_{1}, \cdots, d_{r} respectively.

5.2.1 The Hilbert Polynomial of X_{r}

Theorem 5.2 [2] The Hilbert polynomial $H_{r}(z)$ of X_{r} is given by the following formula

$$
\begin{equation*}
H_{r}(z)=\varphi(z)+\sum_{m=1}^{r}(-1)^{m} \sum_{1 \leq i_{1}<\cdots<i_{m} \leq r} \varphi\left(z-d_{i_{1}}-\cdots-d_{i_{m}}\right) \tag{5.3}
\end{equation*}
$$

where

$$
\varphi(z)=\frac{1}{n!}(z+1)(z+2) \cdots(z+n)=\binom{z+n}{n} .
$$

Proof: From [15, Theorem 2], the Koszul complex $K\left(f_{1}, \cdots, f_{r}\right)$ defined in Definition 3.3 is a free resolution of $S /\left(f_{1}, \cdots, f_{r}\right)$. Namely, we have the following exact sequence

$$
\begin{equation*}
0 \rightarrow \wedge^{r}\left(S^{r}\right) \rightarrow \cdots \rightarrow \wedge^{2}\left(S^{r}\right) \rightarrow S^{r} \rightarrow S \rightarrow S /\left(f_{1}, \cdots, f_{r}\right) \rightarrow 0 \tag{5.4}
\end{equation*}
$$

In [16], in order to grade

$$
\begin{equation*}
\wedge^{m}\left(S^{r}\right)=\bigoplus_{1 \leq i_{1}<\cdots<i_{m} \leq r} S e_{i_{1}} \wedge \cdots \wedge e_{i_{m}}(1 \leq m \leq r) \tag{5.5}
\end{equation*}
$$

a degree $d_{i_{1}}+\cdots+d_{i_{m}}$ is assigned to a basis element $e_{i_{1}} \wedge \cdots \wedge e_{i_{m}}$, so that (5.4) is an exact sequence with maps homogeneous of degree zero. Now imposing the additive property of Hilbert polynomials on the exact sequence (5.4), the formula given in (5.3) is obtained.

Corollary 5.3 The arithmetic genus, $g_{a}\left(X_{r}\right)$, of X_{r} is given by the formula

$$
\begin{equation*}
g_{a}\left(X_{r}\right)=\sum_{m=1}^{r}(-1)^{m+n-r} \sum_{1 \leq i_{1}<\cdots<i_{m} \leq r} \varphi\left(-d_{i_{1}}-\cdots-d_{i_{m}}\right) . \tag{5.6}
\end{equation*}
$$

5.3 Genus Computations of Complete Intersection Curves of Superelliptic type

5.4 Affine Case

In this section, we compute the genus of a complete intersection curve C in $\mathbb{A}_{\mathbb{C}}^{n+1}$ given by,

$$
\begin{align*}
y_{1}^{d_{1}}= & \left(x-a_{11}\right) \cdots\left(x-a_{1 m}\right) \\
y_{2}^{d_{2}}= & \left(x-a_{21}\right) \cdots\left(x-a_{2 m}\right) \tag{5.7}\\
\vdots & \vdots \\
y_{n}^{d_{n}}= & \left(x-a_{n 1}\right) \cdots\left(x-a_{n m}\right)
\end{align*}
$$

where $2 \leq d_{1} \leq \cdots \leq d_{n} \leq m-1$ and all $a_{i j}$'s are distinct, with $a_{i j} \in \mathbb{C}$.
This is a smooth affine curve and its projective closure \bar{C} in $\mathbb{P}_{\mathbb{C}}^{n+1}$ is singular. Let \tilde{C} be a resolution of \bar{C}. The genus of C is then defined to be the genus of \tilde{C}. In the following subsections we will in turn describe the projective closure of C, describe a finite map from \tilde{C} to \mathbb{P}^{1}, count the ramification indices of the points of \tilde{C} under this map and finally apply the Riemann-Hurwitz formula to this map to calculate the genus.

5.4.1 Projective Closure of C

We first consider a complete intersection curve C_{1} of a special type in $\mathbb{A}_{\mathbb{C}}^{3}$ defined by,

$$
\begin{align*}
& y_{1}^{d}=x^{m}+a_{1} x^{m-1}+\cdots+a_{m-1} x+a_{m}=: F_{1}(x) \tag{5.8}\\
& y_{2}^{d}=x^{m}+b_{1} x^{m-1}+\cdots+b_{m-1} x+b_{m}=: F_{2}(x)
\end{align*}
$$

with $2 \leq d \leq m-1$. Let $f_{i}=y_{i}^{d}-F_{i}, i=1,2$, and define the ideal I as

$$
I=\left(f_{1}, f_{2}\right)
$$

We show in what follows that the ideal I and a Gröbner basis of it contain a certain polynomial. As a consequence of this the projective closure of the curve C_{1} can be explicitly defined.

Lemma 5.4 The ideal I has an element of the form

$$
\begin{equation*}
\left(y_{1}^{d}-y_{2}^{d}\right)^{p}+f\left(x, y_{1}, y_{2}\right) \tag{5.9}
\end{equation*}
$$

where $f\left(x, y_{1}, y_{2}\right)$ has degree less than or equal to pd and if deg $f=p d$, then the leading term of $f\left(x, y_{1}, y_{2}\right)$ is divisible by x.

Proof: The proof consists of a series of straightforward and tedious calculations which we summarize below. Note that for any ideal I, if $a-b, c-d \in I$, then $a^{n}-b^{n}, a c-b d \in I$ for any integer $n \geq 1$. Thus, $y_{1}^{d k}-F_{1}^{k}$ (with leading monomial $x^{m k}$) and $\left(y_{1}^{d}-y_{2}^{d}\right)^{l}-F_{3}^{l}$ (with leading monomial $x^{(m-i) l}$) are both in I. Hence the polynomial

$$
y_{1}^{d k}\left[\left(y_{1}^{d}-y_{2}^{d}\right)^{l}-F_{3}^{l}\right]+F_{3}^{l}\left[y_{1}^{d k}-F_{1}^{k}\right]
$$

is in I, which simplifies to a polynomial of the form,

$$
f_{k, l}=y_{1}^{d k}\left(y_{1}^{d}-y_{2}^{d}\right)^{l}-F_{1}^{k} F_{3}^{l}
$$

with leading monomial $x^{k m+l(m-i)}$. The degree of $f_{k, l}$ is $k m+l(m-i)$ and this number belongs to the subsemigroup of nonnegative integers generated by m and $m-i$. It is well known that if $\operatorname{gcd}(a, b)=1$, then the semigroup generated by $a c$ and $b c$, for any nonnegative integers a, b and c, contains all the integers which are divisible by c and are greater than $N=c(a b-a-b)$. Hence for every $n>N$, for some N large enough, and divisible by $\operatorname{gcd}(m, m-i)$ there is a polynomial in I with leading term x^{n}.

Fix an integer $p>m$ divisible by $g c d(m, m-i)$ satisfying $p d>N$ and consider the polynomial

$$
\begin{equation*}
\phi_{p}=\left(y_{1}^{d}-y_{2}^{d}\right)^{p}-F_{3}^{p} \in I . \tag{5.10}
\end{equation*}
$$

Its leading monomial is $x^{p(m-i)}$ which can be eliminated by subtracting a suitable constant times the polynomial $f_{m-i, p-m}$. Since $p d>N$, for every integer n divisible by $g c d(m, m-i)$ and in the interval $[p d, p(m-i)]$ there are nonnegative integers k_{n} and l_{n} satisfying $k_{n} m+l_{n}(m-i)=n$. Dividing both sides of this equation by $m-i$ and observing that $n \leq p(m-i)$ and $m /(m-i)>1$ we obtain the crucial inequality

$$
k_{n}+l_{n} \leq p .
$$

This inequality now assures us that the degree of the $y_{1}^{d k_{n}}\left(y_{1}^{d}-y_{2}^{d}\right)^{l_{n}}$ part of $f_{k_{n}, l_{n}}$ has degree less than $p d$. Thus if α_{1} denotes the leading coefficient of ϕ_{p} and $k_{1}=m-i, l_{1}=p-m$, then

$$
\begin{aligned}
\operatorname{deg}\left(\phi_{p}-\alpha_{1} f_{k_{1}, l_{1}}\right)=n_{2} & <p(m-i)=\operatorname{deg} \phi_{p} \\
\text { and } & =\left(y_{1}^{d}-y_{2}^{d}\right)^{p}+\text { lower degree terms } .
\end{aligned}
$$

Let $m=a c$ and $m-i=b c$ with $(a, b)=1$. We then have two cases:
Case 1: $c=1$ If $\operatorname{deg}\left(\phi_{p}-\alpha f_{k_{1}, l_{1}}\right)=n_{2}>p d$ then we can find nonnegative integers k_{2} and l_{2} such that $k_{2} m+l_{2}(m-i)=n_{2}$ and

$$
\operatorname{deg}\left(\phi_{p}-\alpha_{1} f_{k_{1}, l_{1}}-\alpha_{2} f_{k_{2}, l_{2}}\right)=n_{3}<n_{2}
$$

where α_{2} is the leading coefficient of $\phi_{p}-\alpha_{1} f_{k_{1}, l_{1}}$. Continuing in this manner we eventually obtain a polynomial whose leading form is $\left(y_{1}^{d}-y_{2}^{d}\right)^{p}+f\left(x, y_{1}, y_{2}\right)$ where $x \mid L T(f)$ as claimed.

Case 2: $c>1$ If $n_{2} \leq p d$, then we are done. If $n_{2}>p d$ and is divisible by c then we continue as in case 1 above by subtracting suitable polynomials of I and thus reducing the degree. Therefore we might assume without loss of generality that $n_{2}>p d$ and is not divisible by c.

Let $c_{1}=\left(a c, b c, n_{2}\right)$. Observe that $c_{1} \mid c$ since $(a, b)=1$. So $c_{1} \leq c$. However $c_{1} \mid n_{2}$ but $c \nmid n_{2}$, so $c \neq c_{1}$. Therefore $c_{1}<c$, which assures the finiteness of the following procedure:

We can write

$$
\phi_{p}-\alpha_{1} f_{k_{1}, l_{1}}=H\left(x, y_{1}, y_{2}\right)-F_{4}(x)
$$

where $\operatorname{deg} F_{4}(x)=n_{2}$ and $\operatorname{deg} H\left(x, y_{1}, y_{2}\right)=\left(k_{1}+l_{1}\right) d<p d$.
The subsemigroup of \mathbb{N} generated by $m=a c, m-i=b c$ and n_{2} contains all the integers which are greater than some N and are divisible by c_{1}. Fix an integer p divisible by c_{1} and is such that $p d>N$. Define the polynomial ϕ_{p} as in equation (5.10) (with the new value of p). Define polynomials

$$
f_{j k l}=H^{j} y_{1}^{d k}\left(y_{1}^{d}-y_{2}^{d}\right)^{l}-F_{4}^{j} F_{1}^{k} F_{3}^{l} \in I
$$

with $j, k, l \geq 0$. As before if $\operatorname{deg} f_{j, k, l} \leq p(m-i)$, then $j+k+l<p$.
We are now again at the stage where a suitable constant multiple of the polynomial $f_{j, k, l}$ is subtracted from ϕ_{p} to remove the leading x-term of ϕ_{p} and since $j+k+l<p$ the resulting polynomial is of the type which allows further reduction of x-terms without introducing any y_{1} or y_{2} terms of degree higher than the degree of $\left(y_{1}^{d}-y_{2}^{d}\right)^{p}$. And how we will continue is going to be determined according to whether $c_{1}=1$ or $c_{1}>1$. Since c_{1} is strictly less than c, this process must stop after finitely many steps.

This then proves that there is a polynomial of the form (5.9) in the ideal I.

Corollary 5.5 A reduced Gröbner basis for the ideal I with respect to the graded lexicographic order with $y_{1}>y_{2}>x$ contains an element of the form

$$
\begin{equation*}
\left(y_{1}^{d}-y_{2}^{d}\right)^{k}\left(y_{1}^{r}-y_{2}^{r}\right)^{l}-F\left(x, y_{1}, y_{2}\right) \tag{5.11}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { i) } & k>0, l \geq 0, r \mid d \\
i i) & \operatorname{deg} F \leq k d+r l \\
\text { iii) } & \text { Ifdeg } F=d k+r l, \text { then } x \mid \operatorname{LT}\left(F\left(x, y_{1}, y_{2}\right)\right) .
\end{aligned}
$$

Moreover the leading term of any other element in the reduced Gröbner basis is divisible by x.

Proof: The ideal $L T(I)$ of leading terms of I contains a certain $y_{1}^{p d}$ coming from (5.9). Therefore the Gröbner basis G of I contains an element g whose leading monomial is y_{1}^{k} for some $k \leq d$. Homogenizing g with respect to z and setting $z=0, x=0$ gives a homogeneous form $g\left(y_{1}, y_{2}\right)$ of degree k. (To see why we also need $x=0$ for the points at infinity see the proof of Corollary (5.7).) The zero set of I^{h} and G^{h} must be the same. Moreover since the curve C_{1}, (recall equation (5.8)), has points at infinity the system

$$
\begin{align*}
\left(y_{1}^{d}-y_{2}^{d}\right)^{p} & =0 \tag{5.12}\\
h\left(y_{1}, y_{2}\right) & =0 \tag{5.13}
\end{align*}
$$

must have at least one solution with $\left(y_{1}, y_{2}\right) \neq(0,0)$. Let $g\left(y_{1}, y_{2}\right)=$ $\sum_{i=0}^{k} \alpha_{i} y_{1}^{k-i} y_{2}^{i}$ where $\alpha_{i} \in \mathbb{C}$. All the solutions of the first equation (5.12) are of the form $y_{2}=\alpha y_{1}$, where $\alpha^{d}=1$. To find a common solution of the system substitute $y_{2}=\alpha y_{1}$ into the second equation (5.13). This gives

$$
\left(\sum_{i=0}^{k} \alpha_{i} \alpha^{i}\right) y_{1}^{k}=0
$$

Since $y_{1} \neq 0$ we must have $\sum_{i=0}^{k} \alpha_{i} \alpha^{i}=0$ for all d-th roots α of unity.
Hence $g\left(y_{1}, y_{2}\right)=\left(y_{1}^{d}-y_{2}^{d}\right)^{l} g_{1}\left(y_{1}, y_{2}\right)$ for some integer l and for some polynomial $g_{1}\left(y_{1}, y_{2}\right)$.

If there is an element h in the reduced Gröbner basis whose leading term is $y_{2}^{d k}$ for some integer k, then h is of the form

$$
h\left(x, y_{1}, y_{2}, z\right)=A \cdot\left(y_{1}^{d}-x^{m}-\cdots\right)+B \cdot\left(y_{2}^{d}-x^{m}-\cdots\right)
$$

for some polynomials A and B. The degree of h must also be $d k$ since $y_{1}>$ $y_{2}>x$. We now start guessing what terms should A and B contain: B must have a $y_{2}^{d(k-1)}$ term so that we can have $y_{2}^{d k}$ as the leading term in h. But this gives a term of the form $y_{2}^{d(k-1)} x^{m}$ which should be cancelled by having a term of the form $y_{2}^{d(k-1)}$ in A. This however will give $y_{1}^{d} y_{2}^{d(k-1)}$ which should be cancelled. To cancel it B must have $y_{1}^{d} y_{2}^{d(k-2)}$. Continuing in this manner we see that B should eventually contain a $y_{1}^{d(k-1)}$ term but to cancel the $y_{1}^{d(k-1)} x^{m}$ term arising from the multiplication we must have a $y_{1}^{d(k-1)}$ term in A. This gives $y_{1}^{d k}$ as a term of h and it cannot be cancelled. This however contradicts the assumption about the leading term of h since $y_{1}>y_{2}$. Hence we conclude that the leading term of an element in the Gröbner basis is either of the form $y_{1}^{d k}$ or is divisible by x.

We now return to g. It is now clear that any point at infinity will be contributed by g alone. After homogenizing g with respect to z and setting $x=0$ and $z=0$ we have $g\left(y_{1}, y_{2}\right)=0$ giving all the roots for the points at infinity. Since any root of g is in the common solution set of I^{h}, then it must also satisfy $\left(y_{1}^{d}-y_{2}^{d}\right)^{p}=0$ so it must be an r-th root of unity where $r \mid d$. This then proves that the structure of g is as claimed.

Conjecture 5.6 In equation (5.11) of Corollary (5.5) we actually have $l=0$.

In our calculations with Maple V we always obtained $l=0$. However here we neither need nor see a way of proving this conjecture...

Corollary 5.7 Let C_{1} be the curve defined by (5.8). Its projective closure has only the following points at infinity:

$$
[0: 1: \alpha: 0] \text { where } \alpha^{d}=1 .
$$

Proof: Homogenizing the ideal I with respect to z and setting $z=0$ gives the description of the points at infinity. Note that f_{1} is in I and $f^{h}\left(x, y_{1}, y_{2}, z\right)=y_{1}^{d} z^{(m-d)}-\left(x^{m}+a_{1} x^{m-1} z+\cdots+a_{m} z^{m}\right)$. Setting $z=0$ gives $f^{h}\left(x, y_{1}, y_{2}, 0\right)=-x^{m}$. Hence the x coordinates of all the points at infinity are zero. To find the y_{1} and y_{2} components of the points at infinity we consider the homogenization with respect to z of a reduced Gröbner basis and set $x=0$ and $z=0$. From corollary (5.5) we see that the only surviving
element is g and setting $g^{h}\left(0, y_{1}, y_{2}, 0\right)=0$ gives the points at infinity in the claimed form, where g^{h} denotes the homogenization with respect to z.

Corollary 5.8 Let C_{2} be the curve in \mathbb{A}^{3} defined by,

$$
\begin{align*}
y_{1}^{d_{1}} & =x^{m}+a_{1} x^{m-1}+\cdots+a_{m-1} x+a_{m} \tag{5.14}\\
y_{2}^{d_{2}} & =x^{m}+b_{1} x^{m-1}+\cdots+b_{m-1} x+b_{m}
\end{align*}
$$

with $d_{1}<d_{2}<m-1$. Then the projective closure $\overline{C_{2}}$ of the curve C_{2} in \mathbb{P}^{3} is the union of C_{2} and the point

$$
\left[x: y_{1}: y_{2}: z\right]=[0: 1: 0: 0]
$$

Proof: With the same approach used in Lemma 5.4, we can show that the ideal generated by the above polynomials has an element of the form,

$$
\left(y_{1}^{d_{1}}-y_{2}^{d_{2}}\right)^{p}+f\left(x, y_{1}, y_{2}\right)
$$

where $f\left(x, y_{1}, y_{2}\right)$ has degree less than or equal to $p d_{1}$, and $\operatorname{deg} f\left(0, y_{1}, y_{2}\right)<$ $p d_{1}$. Homogenizing this with respect to z, we obtain

$$
\left(y_{1}^{d_{1}} z^{d_{2}-d_{1}}-y_{2}^{d_{2}}\right)^{p}+f_{h}\left(x, y_{1}, y_{2}, z\right)
$$

Setting $z=0$ gives $y_{2}=0$, since $x=0$ follows from homogenizing one of the generating polynomials and setting $z=0$. This proves the corollary.

Combining Lemma 5.4 and Corollary 5.8 we generalize these two results to the curve given by (5.7).

Corollary 5.9 Let C be the curve in \mathbb{A}^{n+1} defined by (5.7), with $d_{1} \leq d_{2} \leq$ $\ldots \leq d_{n}$. Assume that for some s the first $s d_{i}$'s are equal, i.e. $d=d_{1}=d_{2}=$ $\cdots=d_{s}<d_{s+1}<\cdots<d_{n}$. Then the projective closure \bar{C} of the curve C in \mathbb{P}^{n+1} is the union of C and the points of the form,

$$
\left[x: y_{1}: \cdots: y_{s}: y_{s+1}: \cdots: y_{n}: z\right]=\left[0: 1: \alpha_{2}: \cdots: \alpha_{s}: 0: \cdots: 0\right]
$$

where $\alpha_{2}^{d}=\cdots=\alpha_{s}^{d}=1$.

5.4.2 A Finite Morphism to \mathbb{P}^{1}

In order to compute the genus of a nonsingular model \tilde{C} of the projective closure \bar{C} of C we first define a finite morphism from \tilde{C} to \mathbb{P}^{1}.

There exists a finite morphism

$$
\begin{aligned}
\varphi: C & \rightarrow \mathbb{C} \\
\left(x, y_{1}, \cdots, y_{n}\right) & \mapsto x
\end{aligned}
$$

C is embedded into \mathbb{P}^{n+1} the same way \mathbb{C} embeds into \mathbb{P}^{1}. The morphism φ extends to \bar{C} algebraically by defining

$$
\begin{aligned}
\varphi: \bar{C} & \rightarrow \mathbb{P}^{1} \\
{\left[x: y_{1}: \cdots: y_{n}: 1\right] } & \mapsto[x: 1] \\
{\left[0: y_{1}: \cdots: y_{n}: 0\right] } & \mapsto[1: 0]
\end{aligned}
$$

See also the parametrization (5.16) for a justification of this definition. If \tilde{C} is a resolution of \bar{C} then C and \tilde{C} are isomorphic everywhere except at finitely many points which correspond to the points at infinity and φ extends over to \tilde{C} by sending all the points at infinity to $[1: 0]$ as above.

Thus we have a map

$$
\varphi: \tilde{C} \rightarrow \mathbb{P}^{1}
$$

which is a morphism of degree $d_{1} d_{2} \cdots d_{n}$.

5.4.3 Ramifications of φ

We first examine the $n=2$ case with $d=d_{1}=d_{2}$. Consider the curve C_{1} given by equations (5.8). For the points in the affine plane we can take x as a local parameter. When x is not equal to any of the $a_{i j}$'s then the ramification of φ at x is 1 . When $x=a_{i j}$, then the ramification of φ at x is d. (For the general case of equation (5.7) the ramification at $a_{i j}$ is $d_{1} \cdots \hat{d}_{i} \cdots d_{n}$, where \hat{d}_{i} denotes that the term should be omitted.)

To examine the points at infinity choose a local parameter t with $x=1 / t$. Then we have

$$
y_{1}^{d}=x^{m}+a_{1} x^{m-1}+\cdots+a_{m-1} x+a_{m}
$$

$$
\begin{aligned}
& =(1 / t)^{m}+a_{1}(1 / t)^{m-1}+\cdots+a_{m-1}(1 / t)+a_{m} \\
& =\left(1+a_{1} t+\cdots+a_{m-1} t^{m-1}+a_{m} t^{m}\right) / t^{m} .
\end{aligned}
$$

Let

$$
\begin{align*}
d & =a c \\
m & =b c, \quad(a, b)=1, \quad c \geq 1 \tag{5.15}
\end{align*}
$$

Define a new local parameter T such that

$$
T^{a}=t
$$

Then the above parametrization of y_{1}^{d} becomes

$$
y_{1}^{a c}=\left(1+a_{1} T^{a}+\cdots+a_{m} T^{a b c}\right) / T^{a b c} .
$$

Similarly we have

$$
y_{2}^{a c}=\left(1+b_{1} T^{a}+\cdots+b_{m} T^{a b c}\right) / T^{a b c}
$$

Let $H_{1}(T)$ and $H_{2}(T)$ be power series such that $y_{1}^{a c}=H_{1}^{a c}\left(T^{a}\right) / T^{a b c}$ and $y_{2}^{a c}=$ $H_{2}^{a c}\left(T^{a}\right) / T^{a b c}$. Then the points around infinity are parametrized as

$$
\begin{equation*}
P\left(\alpha_{1}, \alpha_{2}, T\right)=\left[\frac{T^{b}}{\alpha_{1} T^{a} H_{1}\left(T^{a}\right)}: 1: \frac{\alpha_{2}}{\alpha_{1}} \frac{H_{2}\left(T^{a}\right)}{H_{1}\left(T^{a}\right)}: \frac{T^{b}}{\alpha_{1} H_{1}\left(T^{a}\right)}\right] \tag{5.16}
\end{equation*}
$$

where α_{1} and α_{2} are d-th roots of unity. Note that $H_{1}(0)=H_{2}(0)=1$ and thus the points at infinity are of the form $\left[0: 1: \alpha_{2} / \alpha_{1}: 0\right]$ as claimed in Corollary (5.9). In the T-plane let T_{1} and T_{2} be two points such that $T_{2}=\lambda T_{1}$ where λ is an a-th root of unity. We have $T_{1}^{a}=T_{2}^{a}$ but $T_{1}^{b} \neq T_{2}^{b}$ since $(a, b)=1$. Hence $P\left(\alpha_{1}, \alpha_{2}, T_{1}\right) \neq P\left(\alpha_{1}, \alpha_{2}, T_{2}\right)$. As T ranges in the T plane $P\left(\alpha_{1}, \alpha_{2}, T\right)$ describes a branch of the curve at infinity. There are then $d^{2} / a=d c$ branches at infinity. Since there are d points at infinity, around each such point there are then c branches making the total of $d c$ branches. Each branch corresponds to a different point on the resolution so there are $d c$ points on the resolution corresponding to the points at infinity, i.e. the cardinality of the set $\varphi^{-1}([1: 0]) \subset \tilde{C}$ is $d c$. Total ramification index for the preimage of any point under φ, i.e. the degree of φ, is d^{2}. This gives a ramification index of a for each point in the resolution corresponding to the point at infinity.

In the general case when $d=d_{1}=\cdots=d_{n}$, the total ramification index of φ is d^{n}, there are $d^{n-1} c$ branches at infinity each having ramification index a. This is the case for the curve define with the equations (5.18).

In the most general case, see equations (5.7), when $d=d_{1}=\cdots=d_{s}<$ $\cdots<d_{n}$ there are $d^{s-1} c$ branches at infinity each with ramification index
$a d_{s+1} \cdots d_{n}$. In this case the cardinality of $\varphi^{-1}\left(\left[a_{i j}: 1\right]\right)$ is $d_{1} \cdots \hat{d}_{i} \cdots d_{n}$ and the ramification index of each such point is $d_{i}-1$. The total degree of φ is $d^{s} d_{s+1} \cdots d_{n}$.

5.4.4 The Genus Calculation

The Riemann-Hurwitz formula for the map φ takes the form

$$
\begin{align*}
g_{C} & =1-\operatorname{deg} \varphi+\frac{1}{2} \sum_{x \in C}\left(e_{x}-1\right) \tag{5.17}\\
& =1-\operatorname{deg} \varphi+\frac{1}{2} \sum_{x \in \varphi^{-1}([*: 1])}\left(e_{x}-1\right)+\frac{1}{2} \sum_{x \in \varphi^{-1}([1: 0])}\left(e_{x}-1\right),
\end{align*}
$$

where e_{x} denotes the ramification index.

Theorem 5.10 [2] Let C be the complete intersection curve given by,

$$
\begin{align*}
y_{1}^{d}= & \left(x-a_{11}\right) \cdots\left(x-a_{1 m}\right) \\
y_{2}^{d}= & \left(x-a_{21}\right) \cdots\left(x-a_{2 m}\right) \tag{5.18}\\
: & : \\
y_{n}^{d}= & \left(x-a_{n 1}\right) \cdots\left(x-a_{n m}\right)
\end{align*}
$$

where $d+1 \leq m$, and all $a_{i j}$'s are distinct. The genus of C is given by the formula

$$
\begin{equation*}
g_{C}=1-\frac{1}{2}(d-m n d+m n+c) d^{n-1} \tag{5.19}
\end{equation*}
$$

where $c=(d, m)$.

Proof: The degree of φ is d^{n}. The ramification index at finite points x such that $\varphi(x) \neq a_{i j}$ is 1 and for each point $x \in C$ for which $\varphi(x)=a_{i j}$ the ramification index is d. There are d^{n-1} points in $\varphi(x)=a_{i j}$ and the number of $a_{i j}$'s is $m n$. This gives $\frac{1}{2} m n d^{n-1}(d-1)$ for the first summation in (5.17).

There are $d^{n-1} c$ points on the resolution of the projective closure of C corresponding to points at infinity. Each such point has ramification index a. This then gives $\frac{1}{2} d^{n-1} c(a-1)$ for the second summation in (5.17). Putting these in and simplifying gives the seeked formula.

Remark 5.11 Putting in $d=2, c=1$ we recover Stepanov's formula $1+$ $(m n-3) 2^{n-2}$, see [42, p37, Lemma 1]. Stepanov arrives at this formula by
constructing an explicit basis for the differential forms of the curve. He works over a finite field F_{q} of characteristic $p>2$.

We also have an explicit "counting the differentials" method for the genus of the curve C of equation (5.18). See also the equations (5.15) for the conventions in use. For any point in the affine space let x be a local parameter and consider the regular 1-form

$$
\omega_{i_{1}, \ldots, i_{\sigma}}^{\left(j_{1}, \ldots, j_{\sigma}\right)}=\frac{d x}{y_{i_{1}}^{j_{1}} \cdots y_{i_{\sigma}}^{j_{\sigma}}}
$$

where $1 \leq \sigma \leq n, 1 \leq i_{1}<\cdots<i_{\sigma} \leq n$ and $1 \leq j_{1}, \ldots, j_{\sigma} \leq d-1$. By checking the order of vanishings of x and y_{i}^{\prime} 's it can be shown that the form $\omega_{i_{1}, \ldots, i_{\sigma}}^{\left(j_{1}, \ldots, j_{\sigma}\right)}$ is regular at any point in the affine space. Let x_{∞} be any point at infinity on the projective closure of C. Let ν_{∞} denote the order of vanishing of a function at x_{∞}. Choosing $t=1 / x$ as a local parameter around x_{∞} we observe that

$$
\begin{aligned}
\nu_{\infty}(x) & =-a \\
\nu_{\infty}\left(y_{i}\right) & =-b .
\end{aligned}
$$

Let $\bar{\omega}_{i_{1}, \ldots, i_{\sigma}}^{\left(j_{1}, \ldots, j_{\sigma}\right)}$ denote the expression for $\omega_{i_{1}, \ldots, i_{\sigma}}^{\left(j_{1}, \ldots, j_{\sigma}\right)}$ around x_{∞}. We then have

$$
\nu_{\infty}\left(\bar{\omega}_{i_{1}, \ldots, i_{\sigma}}^{\left(j_{1}, \ldots, j_{\sigma}\right)}\right)=\left(j_{1}+\cdots+j_{\sigma}\right) b-a-1
$$

and if $P(x)$ is a polynomial then $P(x) \omega_{i_{1}, \ldots, i_{\sigma}}^{\left(j_{1}, \ldots, j_{\sigma}\right)}$ is regular at x_{∞} if and only if $\operatorname{deg} P(x) \leq\left(\left(j_{1}+\cdots+j_{\sigma}\right) b-a-1\right) / a$. We can then give a basis for the regular differential 1-forms;

$$
\begin{aligned}
\left\{x^{r} \omega_{i_{1}, \ldots, i_{\sigma}}^{\left(j_{1}, \ldots, j_{\sigma}\right)} \mid\right. & \sigma=1, \ldots, n, 1 \leq i_{1}<\cdots<i_{\sigma} \leq n \\
& 1 \leq j_{1}, \ldots, j_{\sigma} \leq d-1 \\
& \left.0 \leq r \leq\left(\left(j_{1}+\cdots+j_{\sigma}\right) b-a-1\right) / a\right\} .
\end{aligned}
$$

The cardinality of this set then gives the genus of the curve C. It turns out that the required formula is

$$
\begin{equation*}
g(C)=\sum_{\sigma=1}^{n} \sum_{1 \leq i_{1}<\cdots<i_{\sigma} \leq n} \sum_{j_{1}=1}^{d-1} \cdots \sum_{j_{\sigma}=1}^{d-1} \llbracket \frac{\left(j_{1}+\cdots+j_{\sigma}\right) b-1}{a} \rrbracket, \tag{5.20}
\end{equation*}
$$

where 【 】denotes the greatest integer function. Note that this formula now works on any algebraically closed field of any characteristic, when $a \neq 0$.

Stepanov has calculated this sum for $d=2$ and $c=1$ over a field of characteristic $p>2$, [42, p372], (in that case $d=a=2$ and $m=b$ is odd).

We finally give the formula for the most general case.

Corollary 5.12 [2] Let C be the complete intersection curve given by (5.7), with $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$ and with the first $s d_{i}$'s equal to d. The genus of C is given by the formula

$$
\begin{align*}
g_{C}= & 1-\frac{1}{2}(d-m n d+m s) d^{s-1} d_{s+1} \cdots d_{n}-\frac{1}{2} d^{s-1} c \\
& -\frac{m d^{s}}{2} \sum_{i=s+1}^{n} d_{s+1} \cdots \hat{d}_{i} \cdots d_{n}, \tag{5.21}
\end{align*}
$$

where $c=(d, m)$.

Remark 5.13 This corollary can be proved in the same way as Theorem (5.10). The ramification values required for the formula are given at the end of section (5.4.3).

Remark 5.14 Note that when we put $s=n$ in the above formula (5.21) we recover the formula (5.19) of Theorem (5.10). However this is only an algebraic phenomena since geometrically the two formulas are derived from different configurations at infinity.

Chapter 6

Conclusion

We have shown that in affine l-space with $l \geq 4$, minimal number of generators of the tangent cone of a monomial curve $\left(\mu\left(I(C)_{*}\right)\right)$ can be arbitrarily large, contrary to the case $l=3$ shown by Robbiano and Valla. Thus, in higher dimensions there is a more complex phenomenon, which is closely related with the structure of the corresponding semigroup. The logical continuation may be to use the determined families of monomial curves having Cohen-Macaulay tangent cone to give a sort of classification of semigroups and thus classification of monomial curves.

We studied the problem by using the ring $k\left[x_{1}, x_{2}, \cdots, x_{l}\right] / I(C)_{*}$, since we tried to use Gröbner theory to find the generators of $I(C)_{*}$ and to check the regularity of an element. This computational aspect helped us a lot; this result would not have been obtained by considering the semigroup ring for checking the Cohen-Macaulayness of the tangent cone of the monomial curve because it does not tell anything about the number of the generators of $I(C)_{*}$. CohenMacaulayness of the tangent cones of the families of monomial curves made Hilbert series and Hilbert polynomial computations possible. Thus, it is a joyful example of using computational methods in solving geometric problems.

REFERENCES

[1] Arslan, S. F., On Arf rings, M.S. Thesis, Bilkent University, 1994.
[2] Arslan, S. F., Sertöz, S., Genus calculations of complete intersections, Comm. in Algebra 26 (1998), no. 8, 2463-2471.
[3] Arslan, S. F., Cohen-Macaulayness of tangent cones, Proc. Amer. Math. Soc., to appear in 1999.
[4] Balcerzyk, S., Josefiak, T., Commutative Rings, Dimension, Multiplicity and Homological Methods, Ellis Horwood Limited, PWN-Polish Scientific Publishers, 1989.
[5] Bayer, D., Stillman, M., A criterion for detecting m-regularity, Invent. math. 87 (1987), 1-11.
[6] Bayer, D., Stillman, M., Macaulay, A system for computation in algebraic geometry and commutative algebra, 1992. Available via anonymous ftp from math.harvard.edu
[7] Bayer, D., Stillman, M., Computation of Hilbert functions, J. Symbolic Computation 14 (1992), 31-50.
[8] Bresinsky, H., On prime ideals with generic zero $x_{i}=t^{n_{i}}$, Proc. Amer. Math. Soc. 47 (1975), no. 2, 329-332.
[9] Bresinsky, H., Symmetric semigroups of integers generated by four elements, Manuscripta Math. 17 (1975), 205-219.
[10] Bresinsky, H., Monomial Gorenstein ideals, Manuscripta Math. 29 (1979), no. 2-4, 159-181.
[11] Bruns, W., Herzog, J., Cohen-Macaulay Rings, Cambridge University Press, 1993.
[12] Cavaliere, M. P., Niesi, G., On form ring of a one-dimensional semigroup ring, Lecture Notes in Pure and Appl. Math. 84 (1983), 39-48.
[13] Cox, D., Little, J., O'Shea, D., Ideals, varieties and algorithms, SpringerVerlag, 1992.
[14] Curtis, On formulas for the Frobenius number of a numerical semigroup, Math. Scand. 67 (1990), 190-192.
[15] Eagon, J. A., Northcott, D. G., Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. (A) 269 (1962), 188-204
[16] Eagon, J. A., Northcott, D. G., A Note on the Hilbert functions of certain ideals which are defined by matrices, Mathematika 9 (1962), 118-126.
[17] Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995.
[18] Garcia, A., Cohen-Macaulayness of the associated graded of a semigroup ring, Comm. in Algebra 10 (1982), no. 4, 393-415.
[19] Heap, B. R., Lynn, M. S., A graph theoretic algorithm for the solution of a linear diophantine equation, Numer. Math. 6 (1964), 110-141.
[20] Herrmann, M., Ikeda, S., Orbanz, U., Equimultiplicity and Blowing Up, Springer-Verlag, Berlin Heidelberg, 1988.
[21] Herzog, J., Generators and relations of Abelian semigroups and semigroup rings, Manuscripta Math., 3 (1970), 175-193.
[22] Herzog, J., When is a regular sequence super regular?, Nagoya Math. J. 83 (1981), 183-195.
[23] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic 0, Ann. of Math 79 (1964), 109-326.
[24] Hochster, M., Ratliff, Jr., L. J., Five theorems on Macaulay rings, Pacific J. of Math. 44 (1973), 147-172.
[25] Kunz, E., The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751.
[26] Kunz, E., Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, Boston Basel Berlin, 1991.
[27] Lang, S., Algebra, Addison-Wesley, 1993.
[28] Lewin, M., An algorithm for a solution of a problem of Frobenius, J. reine angew. Math 276 (1975), 68-82.
[29] Lipman, J., Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685
[30] Macaulay, F. S., The Algebraic Theory of Modular Systems, Cambridge University Press, Cambridge, 1916.
[31] Milne, J. S., Algebraic Geometry (Notes for Math 631, University of Michigan, Fall 1993), http://www.math.lsa.umich.edu/ jmilne/, 1996.
[32] Molinelli, S., Tamone, G., On the Hilbert function of certain rings of monomial curves, J. Pure and Applied Algebra 101 (1995), 191-206.
[33] Molinelli, S., Patil, D. P., Tamone, G., On the Cohen-Macaulayness of the associated graded ring of certain monomial curves, Beiträge Algebra Geom. 39 (1998), no. 2, 433-446.
[34] Morales, M., Syzgies of monomial curve and a linear diophantine problem of Frobenius, Max-Planck-Institut für Mathematik, preprint.
[35] Morales, M., Noetherian symbolic blow-ups, Journal of Algebra 140 (1991), 12-25.
[36] Robbiano, L., Valla, G., On the equations defining tangent cones, Math. Proc. Camb. Phil. Soc. 88 (1980), 281-297.
[37] Sally, J. D., On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ. 17 (1977), 19-21.
[38] Sally, J., D., Super-regular sequences, Pacific Journal of Mathematics 84 (1979), no. 2, 465-481.
[39] Sally, J., D., Tangent cones at Gorenstein singularities, Composito Math. 40 (1980), 167-175.
[40] Sally, J., D., Good embedding dimensions for Gorenstein singularities, Math. Ann. 249 (1980), 95-106.
[41] Sertöz, S., Özlük, A., On a Diophantine problem of Frobenius, Bull. Tech. Univ. Istanbul 39 (1986), 41-51.
[42] Stepanov, S., Character sums and coding theory, Finite Fields and Applications (1996), 355-378.
[43] Vasconcelos, W., Computational Methods in Commutative Algebra and Algebraic Geometry, Springer-Verlag, Berlin Heidelberg, 1998.

Vita

Sefa Feza Arslan was born in Sivas, on July 29, 1970. He received his B.S. degree from the Electrical and Electronics Engineering Department, Bilkent University in June, 1992. After then, he continued his studies in the Department of Mathematics, Bilkent University as a research assistant. He got his M.S. degree in September, 1994 under the supervision of Asst. Prof. Dr. Sinan Sertöz by the thesis entitled "On Arf rings". In 1998, he visited Prof. Dr. Wolmer Vasconcelos at Rutgers University, U.S.A. His research interests include monomial curves, Arf rings, Cohen-Macaulay rings, Gröbner theory and Hilbert functions.

[^0]: Asst. Prof. Alexander Degtyarev

