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DE LA SUITE DES ORDRES DE MULTIPLICITY

D'UNE BRANCHE ALG^BRIQUE"*

By PATRICK DU VAL

[Received 30 September 1946.—Read 14 November 1946]

Cahit Arf's results being severely algebraic in form, their geometrical
meaning may not, at first sight, be evident to all geometers; it is felt there-
fore that a word of explanation may not be out of place.

A branch being parametrized as in § 8 of C.A., the orders of the elements
of the ring

are the possible intersection numbers of all hypersurfaces with the branch;
in fact the intersection number of the hypersurface

is clearly the order of the element

of the ring. If the ring H is canonical, theorem 7 shows that these inter-
section numbers are all the multiplicity sums of the branch. This accordingly
is the characteristic property of a canonical branch. It does not, as one
might suppose, follow from this that there exist hypersurfaces passing
simply through every number of consecutive points of the branch; for the
r i n g H = k+k[t]t*

corresponding to an ordinary cusp

i1 — i t 12 — i

is clearly canonical, whereas there are no curves passing simply through
more than the first two points of the branch.

* Supra, 256-287. Referred to as C.A.



1946] ORDRES DE MULTIPLICITE D'UNE BRANCHE ALGEBRIQUE 289

Thus the uniqueness of the canonical closure of a ring means that every
branch is a projection of sequence, unique save for a transformation regular
at the origin.

The number of base characters of the branch clearly gives the minimum
space in which there can be a branch canonically equivalent to the given one.

To fix our ideas, let us consider the ring generated by

considered by C.A. The classical theory of Enriques shows that the points
Pv P2,... consecutive along this plane branch are of multiplicities

4,4,2, 2,2,2, 1, 1, ...,

P4 and P8 being satellite and the rest free. Since typical elements of orders

0, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35
are

1, JCj, Xlt X2, Aj, X^X2y AJ , X1X2, AJ, XiX2, X1} X2 —

JCJ, X^X2~ X^, A 1 J L 2 , JLJ, A 1 A 2 — Ji-i, JLjA2, X2

we can write

H = k[XxX2]
= k + kt* + kt8 + ktlo( 1 + *5) + kt12 + ktu( 1 +15) + kt1* + kt18( 1 +15)

+ kt20 + kt22(l +1&) + kt2* + kt25(2 +1&) + kt26(l + tb) + kt28 + kt29(2 +1

which is the same thing as

H = k + kt* + kt* + kt™( 1 +1*) + kt12 + kt"{ l+t*) + kt16 + kt18( 1 + *5)

+ kt20 + kt22( l + t*) + kt2* + kt25 + kt™( l+t*) + kt28 + kt29 + kt30 + k[t] t™;

we have thus

i = k + kt* + kt«(l + tb) + kt8 + ktlo(l +15) + kt12 + ktu(l +1&)

+ kt1* + kt18( l + t5) + kt20 + kt21 + kt22( l + t5) + kt2* + kt25 + kt2* + k[t] t28,

and, as the ring generated by this contains the elements

of order 17, 23 respectively, we have

H± = [74] = k + kt* + kt«( l+t&) + kt8 + ktlo(

+ kt12 + ktu( 1 + «6) + ktu + kt11 + kt18 + k[t] t20.

SBR. 2. VOL. 50. NO. 2397.
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By exactly the same method we see that

t* + k[t] t\

and since this is clearly canonical we find that the canonical closure of Hx is

• # ! - k + t*H2 = k + kt* + kt*( 1 + «5) + kt6 + ktw + k[t] «12,

and that of H is

*H =

of which, as we expect, the characters are, 4, 10, 17, the first, third, and
seventh multiplicity sums of the branch. Since

*H — k[Xv X2, X3, X4],

where X3 = t17, X4 = t19, we see that the canonical branch of which the given
branch is a projection is in four dimensions. Any projection of this into two
dimensions is represented by a ring of the form k[Ylf Y2], where Yv Y2 belong
to H, and can clearly be chosen to be of orders 4, 10 respectively, i.e. we
may take

for different values of the coefficients alt a2,..., blt 62,..., these branches are
not regularly but only canonically equivalent.

An interesting feature is the apparent unimportance of the term t15 in
the canonical ring, whereas of course this is of fundamental significance in
determining the characters of the plane branch. In fact the canonical ring

*H - k + kt* + kts + ktlo{ l+t&) + kt12 + kt1* + k[t] tl«

clearly has the same characters as

*H' = k + kt* + kt6 + kt10 + ktli + ktu + k[t] «16,

which is. also canonical. This latter, however, cannot be generated by two
elements; in fact a base for it must be in some such form as

thus of the two canonical branches

and X'x = t\ X'2 = tw, X3 = t17, X 4 = <19,

both of which have two fourfold followed by four twofold and a succession
of simple points, the former can and the latter cannot be projected into
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a plane branch with the same multiplicity sequence. In fact a general plane
projection of the latter is of the form

/10 4. A/17

or in terms of

T = (

t = T

and Y[ = T4, Y'2 = t 2 3 ^ ;

which by Enriques's theory clearly represents a branch with two fourfold
followed by not four but five twofold points; the canonical closure of
k[Y'x, Y2] is in fact not *Hf but its canonical subring

lc + kt* + kt* + Bw( 1 + of) + kt1* + tou + to16 + k[t] t™,

where a is a fixed constant depending on those in the expansions of Y[, Y't.
*H' is, however, the canonical closure of

or of the ring representing a general projection of the branch corresponding
to *H' into three dimensions. This canonical branch can accordingly be
projected into three but not into two dimensions without changing its
characters; in short, whereas the two canonical branches considered both
have the characters 4, 10, 17, the base characters of the former are 4, 10,
and those of the latter 4, 10, 17.

Projection of any branch from a general point clearly gives one represented
by a subring of the ring representing the given branch; if the projection
alters the characters (i.e. the multiplicity sequence) of the branch, this means
that the canonical closure of the subring is not that of the given ring, but
is a subring of the latter; i.e. the multiplicity sums

for the projected branch are a certain selection, not the whole, of the
multiplicity sums

of the given branch. Thus we must have for some iv i2,...

T2
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I t seems natural to regard the first point of the projected branch as corre-
sponding to the first ix points of the given branch, the next point of the
former to the next i2 points of the latter, and so on. Thus in the projection
of the branch

k + W + M* + kt10 + kt12 + ktu + k[t] tu

into a plane we may hold that the seventh and eighth points of the canonical
branch (which are its first two simple points) are projected into the same
point of the plane, which is accordingly a fifth double point of the plane
branch. This is seen to agree with the genesis of a cusp by projection from
a point on the tangent, where the double point on the projected branch
certainly arises from two consecutive simple points on the original, the
second point on the projected branch from the third simple point on the
original, and so on.

Thus where a branch, such as

cannot be projected into a lower space without altering its characters, this
means that every cone (of whatever vertex) which passes through certain
of its points inevitably passes through certain others; in the present case
every cone which passes through the seventh point passes also (and with
the same multiplicity) through the eighth; whereas the branch

has not this property.
The canonical rings

H\ = K J , #2> #3> •••!

obtained from a canonical ring H represent the branches obtained by
resolving the points of the branch in succession, as is seen in the course of
the proof of C.A., theorem 7. Thus the base characters of these rings show
the dimensions of the least spaces into which these resolved branches can
be projected without altering their characters. For instance, of the branches

\
*H' = k + kt*» + kt«"( 1 +1) + kt7v( l+t) + k[t] t*>, J

considered in C.A. §7, both are capable of being projected into three
dimensions without altering their characters, and each has a 4i>-ple, a 2j>-ple,
and two v-ple followed by simple points. The branches

2* + JfcP + k[t] t*»,

^i l + t) + kt3v( l + t) + k[f] &t
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obtained by resolving the first points of each, have of course the same
multiplicity sequence, namely a 2v-ple, and two y-ple, followed by simple
points; but whereas the former of these cannot be projected into a plane
without altering its characters, the latter can. In fact the general plane
projection of the former is represented by a ring pf the form k[Ylf Y2] where

By the same method as in the first example the canonical closure of this
is found to be

the characters of which are 2v, Sv, 5v + 1, so that the projected branch has a
2y-fold followed by not two but three y-ple and a succession of simple
points, i.e. the first v simple points of the branch *H± are projected into
a single y-ple point; the same result is obtained by expressing the ring in
terms of T = Y\l2i>, when it takes the form

Yx = T*\ 72 = T

By similar methods it can be seen that the projection of either of the
original branches *H, *H' into a plane has one 4*>-pie and two 2y-ple followed
by simple points, i.e. the two y-ple points are projected into a single 2i>-ple
point.

In the same way it can be seen that the branches

(i) X1 = t™, X2

(ii) Xt = *702(l + «72)3, X2 = i1620(l -M72)7,

(iii) Xx = <702(l +<115)3, X2 =.tl620(l + *115)7, X3 =

(iv) Xx = «702(l +<7)13, X, = *1620(l +t7)30, X3 = <2340(l -M7)44,

(v) Zi = «7M(l+<T)"(l+«7»)8, X2 = «1620(l + «7)3(l + «79)7.

considered in C.A. § 7, all of which have the characters

702, 1620, 2340, 2383

and the multiplicity sequence

702 (twice), 216 (three times), 54 (five times),

18 (three times), 7 (twice), 4, 3,

followed by simple points, differ in the minimum space into which their
canonical equivalents can be projected without altering their characters,
(ii), (iii), (iv), indeed all exist in three dimensions and cannot be projected
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into a plane; but whereas the branch obtained by resolving the first five
points of (iv) can be projected into a plane without altering its characters,
those obtained from (ii) and (ill) in the same way cannot. The difference
between these latter is not quite of the same kind, since the number of base
characters is the same at every stage; only their values differ; thus whereas
in (iii) the ring k[Xv X2, X3] contains an element of order 2340, in (ii) it
does not; this means that the branch (iii), or any other in three dimensions
canonically equivalent to it, can be cut by a surface (in the given form the
plane X9 = 0) so that the intersection number is 2340, i.e. a surface can be
drawn passing simply through the first eleven points of the branch (as far
as the first 18-ple point), while in the case of (ii) this is not possible—every
surface passing through the eleventh point either passes through some
further points after it, or has higher multiplicity at some of the earlier
points.

The branch (v) is a plane branch, and can therefore by the classical theory
be expressed in the form

X1 = T702, X2 = T1820 + ax167* + 6T1692 + CT1699 +. . . (b =# 0, c * 0).

The transformation from the variable t to T = XY702 is lengthy but straight-
forward.

It is hoped that enough has been said to make clear the geometrical
significance of the canonical branch of which a given branch is a projection,
and of the number and values of its base characters.

The University
Istanbul


