A generalization of the Hasse-Arf theorem*)
By Masatoshi Ikeda at Ankara

Introduetion

Let L/K be a totally ramified finite galois extension of a complete field K with
respect to a discrete valuation such that the residue class field L of L is a separable ex-

tension of the residue class field X of K. Then a class function a,; on the galois group &
of L/K is defined which turns out to be a character of G called the Artin character attached
to L/K. The purpose of this paper is to give an explicit formula of the multiplicity f(x)
of an absolutely irreducible character y of G in a4'). Namely we prove the following.

Theorem 1. Let L/K be a totally ramified finite galois extension of a complete field
K with respect to a discrete valuation such that the residue class field L of L is separable

over the residue class field K of K. For any absolutely irreducible character y of G, let u be
the largest index in the sequence of the ramification groups {G;} of L|K such that any repre-
sentation of G affording y is not trivial on G, where, for the unit character of G, u is assumed
to be — 1. Then the multiplicity f(x) of x in the Artin character a, attached to L|K ts equal
to (prx(w) + 1)x(e)?), where e is the unit element of G.

From this we obtain the following theorem which is a generalization of the Hasse-
Arf theorem®).

Theorem 2. Let L/K be as above. For each jump index u in the sequence of the rami-
fication groups of L|K, there is an absolutely irreducible character y of G such that any re-
presentation of G affording x is not trivial on G, but trivial on G, ,. The number
@ x(u)y(e) is then an integer.

Preliminaries. Let L/K be as before. The normalized valuation of L is designated
by »,. The function iz on the galois group G of L/K is defined by

ig(s) = v, (s(x) — &) for s€G,

where « is a generator of the valuation ring of L over that of K. i, is well-defined, i. e.,
it does not depend on the special choice of «. For each integer ¢ = 0, the group
G,={s€G|iz(s) =i+ 1} is a normal subgroup of G, and the descending sequence

*) This work was carried out at the Research Unit for Pure Mathematics supported by the Turkish Scienti-
fic and Technical Research Council.

1) f(x) is the exponent of the conductor of y. For linear characters the multiplicity is well known. Cf.,
for instance, Serre [5], VI, § 2, Prop. 5.

2) As for the definition of ¢k, cf. Preliminaries.

3) Cf. Arf [1], Hasse [3], [4] or Serre [5], IV, § 4.
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{G} is the sequence of the ramification groups of L/K. For the sake of simplicity the
definition of the function ¢, () is given only for integral values x = — 1. Namely

(M) = 3| G,/Gy | for an integer m = 1, g, x(0) = 0, and gy (— 1) = — 1. Herein
i=1

| H | stands for the order of a group H. If G, + G, ,, then u is called a jump index in the
sequence {G;}. For each jump index u,, the group G, is designated by V,. Note that if
s€V,\ V., then iy(s) = u,; + 1. The function a; on G is defined by

—1ig(s), for s * e,

ay(s) =
o(s) tfia(t), for s = e.

where e is the unit element of G. The theorem of Artin®) states that the function a is
actually a character of G, the Artin character attached to L/K. Any representation over
the complex number field affording the character aq is called the Artin representation
attached to L/K.

Proof of the theorem

We begin with the following elementary lemma.

Lemmal. Let G=Ny>N,>--->N,=/{e} be a sequence of distinct normal
subgroups of a finite group G, v, the character of the augmentation representation of NN, ,,
and v} be the induced character of v, for t = 0,1,...,r—1. Then, being t, and 1, the
regular and the unit character of G respectively, we have

r—1

rgzig‘l_i:ZO bl*'

Proof. To prove the assertion we compare the values taken by the characters above
at each point in G. First, for the unit element e of G, we have t,(¢) = | G |. On the other
hand we have

(te+ Z o2)@ + 1+ 2 1GINI( NNy —1) =L+ GIN, | —| GIN, | = | G1.

Next let a be in N, \ N, ;. Then v} (a) = 0 for all j = i, + 1. Hence the value taken
by the right-hand side in the above formula is

o G—1
(1a+.§)b?)(a)= L+ ZIGINJ (NN | —1) + 2 0, (e az)

2mod N,
to—1 iy
=1 +2 l G/le—i:‘%l GIN,| =0,

since b; (b)) = —1 for any b € N; \\ N, ,,. On the other hand t,(a) = 0, hence the values
taken by the characters in question coincide with each other at each point in G. This
completes the proof.

Corollary. Keeping the notations and assumption in Lemma 1, let y be any ab-
solutely irreducible character of G indifferent from 1,. Then there is a uniquely determined
index i such that y is an irreducible constituent of v}. The index i is characterized as the
largest index i for which any irreducible representation of G affording y is not trivial on
N,. The multiplicity of y in v} is equal to y(e).

4) Cf. Serre [5], VI, § 2, Théoréme 1.
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Proof. 1f we could show that, for i < j, v and v* do not have any common ab-
solutely irreducible constituent, then the rest of the assertions follows from the ordinary
representation theory. Now if ¢ were a common irreducible constituent of v¥ and b}k,
then the restriction ¢, would consist on one hand only of the unit character of IV;, on
the other hand it woufd consists of irreducible characters of N; different from the unit
character. A contradiction.

Lemma 2. Let uy, < u, <--+ < u, be the set of whole jump indices in the sequence
of the ramification groups of L|K. Further let v, be the character of the augmentation re-
presentation of V.|V, , for t =0,1,...,r, where V_ _, stands for the unit subgroup of G.
Then, being v¥ the induced character of v,, we have

Qg = .5) (‘I’L/K(ut) + 1)vF.

Proof. 1t suffices to show that ag = agy, + (¢rx(u,) + 1)v¥. Here again we
compare the values taken by the above characters at each element of G. Let s + ¢ be an

element of G. Then ag(s) = — i4(s). To compute the value of the right-hand side at s,
we consider the following two cases:

(i) s€V,;

(it) s€V,.

In the first case, let s € G|V, be the coset containing s. Then s is different from the
unit element e of G/V,. Hence agy,(s) = ——iG”,r(Z'). Now, as is known®),

iG/V,('E) =1/ V,| Zig(s).
s'€s
Each element s’ in s is of the form st with ¢ € V,. Being « a generator of the valuation
ring of L over that of K, we have iy(st) = v, (st(x) — &) = v, (st(x) — t(x) + t(x) — ).
The fact that »,(st(x) — t(x)) = v, (s(x) — «) together with the assumption that s ¢ V,

and ¢ € V,, implies ig(s") = ig(s). Hence agyp (s) = —ig(s). On the other hand, s¢vV,
implies that v (s) = 0. Thus we have a;(s) = (agr, + (pgs(®,) + D)0})(s).
In the case (ii), s € V, but s + e. Hence v*(s) = — | G/V, |, which in turn implies
Pam() + D0F () = —1/1 V,| 16| =— Z(w—u )| VIV, ],

where u_, is, as usual, assumed to be — 1. Furthermore s € V, implies that the coset s in
G|V, containing s is the unit element e. Hence

r—1

Ay, () = aG/V,(E) =_tf;_ iG’/V'(i) =2 @+ HAVJV I—1 ViV, D)

|
AR

r

= (ui_ ui—l) ' Vi/Vr l - (ur~1 + 1)’

(]

Il
o

where u_, = — 1. Here note that (G/V,), = G,/V, for any i < u,%). Thus we obtain

(aG/V, + ((pL/K(ur) + 1)”:‘) (3) = (ur'__ ur-—l) - (ur—l + 1) = (ur + 1)'
On the other hand the assumption that s € V, but s =+ e, implies that iy(s) = u, + 1.
Hence ag(s) = (aG/V, + (pyx () + 1)v¥) (5)-

8) Cf. Serre [5], IV, § 1, Prop. 3.
$) Cf. Serre [5], IV, § 1, Corollaire.
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To complete the proof we have to show that the same holds for e. This however can
be seen from the fact that )éaa (s) = 0 and 2@ (agv, + (@rx(@) + 1)0F) (s) = 0.
8€ 8€

Now the proof of Theorems 1 and 2 follows immediately from the above lemmata.

Remark. The proof of Theorem 2 given above is based on the theorem of Artin, the
proof of which depends on the Hasse-Arf theorem together with some reduction tech-
niques in the representation theory such as Brauer’s theorem concerning induced cha-
racters. The statement in Theorem 2 however has, at least superficially, nothing to do with
Artin’s representations, and the theorem of Artin is even a direct consequence of Theorem
2. In this respect it would be of interest to try to prove the theorem without using the
theorem of Artin. By the way Theorem 2 is best possible. Namely Serre gave an example
of a totally ramified extension L/K with the galois group isomorphic to the quaternion
group such that the jump indices are 1 and 3, and @, (3) = 3/27).

7) For the detail, cf. Serre [6], Section 4.
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