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Abstract

The limiting behavior of a multivariate rational function at its only singularity
is read off from the exponents that appear in the expression of the function. We
give two proofs of the result, one uses a direct approach and the other uses Lagrange
multipliers method.

The behavior of a multivariable rational function at its singularities is erratic. The sim-
plest case where we have a chance of understanding its behavior is when the denominator
vanishes only at the origin. In two-variable case this rational function defines a surface
which either intersects the z-axis at one point or wraps around it at the origin. To decide
which-happens-when is a tricky process. For this reason not many examples float in the
literature. For example how do we calculate

lim
(x,y,z)→(0,0,0)

x3y2z

x4 + y12 + z14
, or lim

(x,y,z)→(0,0,0)

x3y2z2

x4 + y12 + z14
?

For a multivariable rational function whose denominator vanishes only at the origin, the
continuity of this function at the origin must certainly be encoded in the exponents of
the variables. The task is therefore to decipher this code, which is given by the following
theorem:

Theorem: Let a1, . . . , aN be non-negative integers, m1, . . . ,mN be positive integers and
c1, . . . , cN be positive real numbers, where N > 1. Then

lim
(x1,...,xN )→(0,...,0)

xa11 · · ·x
aN
N

c1x
2m1
1 + · · ·+ cNx

2mN
N

exists if and only if
N∑
i=1

ai
2mi

> 1.

Moreover, when the limit exists, then it is zero.
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Remarks: Before we prove this theorem, a few remarks are in order.

• First it is easy to notice that we can take all the ci as 1 after re-scaling; define the new
coordinates as Xi = βixi where βi > 0 and β2mi

i = ci, i = 1, . . . , N . Hence from now on
we will take ci = 1, i = 1, . . . , N .

• It is also clear that the only influence of the ais is to set the rate of growth of the
function. Therefore they can be chosen as any non-negative real numbers provided that
either we restrict the choice of the variables to non-negative values or we enter into the
realm of complex numbers.

• The N = 1 case is totally trivial and is slightly different than the general case. In that

case the limit exists if and only if
a1

2m1

≥ 1. When it exists, the limit is 1 when equality

holds and is zero otherwise.

• For notational convenience in the proof, we define ~x = (x1, . . . , xN), and set

f(~x) =

∏N
i=1 x

ai
i∑N

i=1 x
2mi
i

.

We also define

p =
N∏
i=1

mi,

pi = p/mi, i = 1, . . . , N.

Proof of the theorem: First assume that the limit exists. In this case the
limit along any path must also exist and be independent of path. For this purpose set
λ = (λ1, . . . , λN) where each λi > 0, i = 1, . . . , N . Restricting f to the path

~xλ(t) = (λ1t
p1 , . . . , λN t

pN ),

we get

f( ~xλ(t)) =

( ∏N
i=1 λ

ai
i∑N

i=1 λ
2mi
i

)
t(a1p1+···+aNpN )−2p.

As t → 0, this limit will exist and be independent of λ only if the power of t is strictly
positive, i.e.

a1p1 + · · · aNpN − 2p > 0
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or equivalently
a1

2m1

+ · · ·+ aN
2mN

> 1, (*)

which is precisely the necessary condition we seek.

Conversely assume that the inequality (*) holds. We will show that lim
~x→0
|f(~x)| = 0.

We will use induction on N . Clearly there is nothing to prove when N = 1, since then
f(x1) = xa1−2m1

1 and (*) implies immediately that the required limit exits and is zero.

Now assume N > 1. Our strategy will be to restrict |f(~x)| to lines parallel to one of the
coordinate axes, say the x1-axis, and show that it is bounded along each such line with
its maximum value going to zero as the line approaches to the origin.

First we observe that if for some j we have
aj

2mj

≥ 1, then

|f(~x)| = |xa11 · · ·x
aj−2mj

j · · ·xaNN |
x
2mj

j∑N
i=1 x

2mi
i

≤ |xa11 · · ·x
aj−2mj

j · · ·xaNN |.

By the inequality (*), either aj − 2mj > 0 or ai > 0 for some i other than j. Then by the
sandwich theorem we have lim

~x→0
|f(~x)| = 0.

Therefore we are reduced to the case where 0 ≤ ai < 2mi, i = 1, . . . , N . It is clear that
when (*) holds, at least one of the ai is strictly positive. Without loss of generality assume
that 0 < a1 < 2m1.

At this point we quote our induction hypothesis:

If
d2

2m2

+ · · ·+ dN
2mN

> 1, then lim
(x2,...,xN )→(0,...,0)

∏N
i=2 |xi|di∑N
i=2 x

2mi
i

= 0,

where d2, . . . , dN are non-negative integers, and m2, . . . ,mN are positive integers.

Now for any ~x = (x1, . . . , xN) set π(~x) = (|x2|, . . . , |xN |).

We fix ~x and consider the non-trivial case when π(~x) 6= (0, . . . , 0).

We now restrict the function f(~x) to the line

t 7→ (t, |x2|, . . . , |xN |), t ∈ [0,∞).
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Call the restriction of f to this line by φπ(~x);

φπ(~x)(t) = f(t, |x2|, . . . , |xN |) =

(
N∏
i=2

|xi|ai
)

ta1

t2m1 +
(∑N

i=2 x
2mi
i

) , t ∈ [0,∞).

Clearly φπ(~x)(t) ≥ 0 on its domain, φπ(~x)(0) = 0 and moreover lim
t→∞

φπ(~x)(t) = 0. Hence

the function φπ(~x)(t) will attain its maximum value at some point, say tπ(~x) ∈ [0,∞). We
then have

0 ≤ |f(~x)| = φπ(~x)(|x1|) ≤ φπ(~x)(tπ(~x)), for all |x1| ∈ [0,∞).

It now remains to show that lim
π(~x)→0

φπ(~x)(tπ(~x)) = 0.

A direct calculation yields that φπ(~x)(t) has its maximum at

tπ(~x) =

(
a1

2m1 − a1

) 1
2m1

(
N∑
i=2

x2mi
i

) 1
2m1

.

The maximum value of φπ(~x)(t) can now be written as

φπ(~x)(tπ(~x)) = K g(π(~x))
(1− a1

2m1
)
,

where K is a constant and

g(π(~x)) =

∏N
i=2 |xi|di∑N
i=2 x

2mi
i

,

where di =
ai

1− a1
2m1

, i = 2, . . . , N . (Compare this with our induction hypothesis above.)

The condition (*) implies that

d2
2m2

+ · · ·+ dN
2mN

=

(
1

1− a1
2m1

)(
a2

2m2

+ · · ·+ aN
2mN

)
> 1

and this in turn, by the induction hypothesis, implies that

lim
π(~x)→0

φπ(~x)(tπ(~x)) = 0,

which completes the proof. �
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We can discuss even the differentiability of such fractions:

Corollary: Let a1, . . . , aN ,m1, . . . ,mN be all positive integers and c1, . . . , cN be positive
real numbers, where N > 1. Then the function

f(~x) =

∏N
i=1 x

ai
i∑N

i=1 cix
2mi
i

is C1 at the origin if
N∑
i=1

ai
2mi

> 1 + max
1≤j≤N

{ 1

2mj

}.

Proof: We calculate the jth partial derivative for j = 1, . . . , N and find that∣∣∣∣ ∂f∂xj
∣∣∣∣ ≤ |xj|aj−1

∏N
i=1,i 6=j |xi|ai∑N

i=1 cix
2mi
i

(aj + 2mj) .

Now apply the theorem to assure the continuity of this expression at the origin. �

A final remark: The proof of the theorem reveals that there is a distinguished path,
(λ1t

p1 , . . . , λN t
pN ), with the property that the limit exits if and only if it exists along this

path. It is tempting to ask at this point if such a royal path exist for every limit problem.

Postscript (April 2014): It is communicated to me by Murad Özaydın of Oklahoma
University that the method of Lagrange multipliers can also be used to give an alternate
proof for this theorem. Here is my rendition of that idea.

As in the above proof we assume without loss of generality that 0 ≤ ai < 2mi, i = 1, . . . , N
and that a1 > 0. Also note that if ~x approaches the origin along a path where x1 = 0,
then the limit along that path is zero. Hence if the limit of f(~x) as ~x→ (0, . . . , 0) exists,
then this limit must be zero.

Now let
F (~x) = xa11 · · · x

aN
N , and G(~x) = x2m1

1 + · · ·+ x2mN
N .

Let R > 0 be a real number. We pose the problem of finding the minimum and maximum
of F (~x) subject to the condition that G(~x) = R. We will show that this minimum and
maximum values go to zero as R→ 0 if and only if the condition

∑N
i=1

ai
2mi

> 1 is satisfied.
This will then prove the theorem.
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Applying the Lagrange multipliers method we obtain the equalities

aix
a1
1 · · ·x

ai−1
i · · ·xaNN = 2λmix

2mi−1
i , i = 1, . . . , N.

Without entering the discussion about the cases when ai < 1, we multiply both sides of
each equation by xi to obtain

aiF (~x) = 2λmix
2mi
i , i = 1, . . . , N.

The case when any xi = 0 will cause F (~x) = 0, and this will not give the minimum
or maximum values. So we may assume for the aim of obtaining the min/max points
that each xi is different than zero. Then we can divide each equation by 2mix

2mi
i , and

eliminate λ by writing

ai
2mi

F (~x)

x2mi
i

=
a1

2m1

F (~x)

x2m1
1

i = 2, . . . , N.

Since we are considering the cases when F (~x) 6= 0, we can cancel F from each side of
these equations to obtain

x2mi
i =

aim1

a1mi

x2m1
1 , i = 2, . . . , N. (**)

This leads to the equation, through G(~x) = R,

x2m1
1

(
1 +

m1

a1

N∑
i=2

ai
mi

)
= R.

Note that
(

1 + m1

a1

∑N
i=2

ai
mi

)
is a nonzero constant, so set

α =

(
1 +

m1

a1

N∑
i=2

ai
mi

)−1
.

Then we have

x2m1
1 = αR, and from (**), x2mi

i =
aim1

a1mi

αR, i = 2, . . . , N.

Hence the critical points which give the minimum and maximum of F (~x) are of the form

x1 = ±α
1

2m1R
1

2m1 and xi = ±
(
aim1

a1mi

α

) 1
2mi

R
1

2mi , i = 2, . . . , N.
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This shows that the absolute value of the minimum value of F at these critical points is
equal to the maximal value of F , and the value of F at these critical points is given by

|F (~x)| = |xa11 · · ·x
aN
N | = AR

a1
2m1

+···+ aN
2mN ,

where

A = A1 · · ·AN , and A1 = |α
1

2m1 |, Ai = |
(
aim1

a1mi

α

) 1
2mi

|, i = 2, . . . , N.

Now the above discussions show that the maximum value MR of |f(~x)| on the surface
G(~x) = R is given by

MR =
|F (~x)|
G(~x)

= AR
a1

2m1
+···+ aN

2mN
−1
.

If
∑N

i=1
ai
2mi

= 1, then the limit of MR as R → 0 will give a non-zero constant A. We
already argued that if the limit exists then this limit has to be zero, so in this case the
limit does not exist. And in fact if the limit exits then this sum,

∑N
i=1

ai
2mi

cannot be one.

It is now clear that the limit exists if and only if
∑N

i=1
ai
2mi

> 1, and in that case the limit
is zero.

This then constitutes an interesting alternate proof for the theorem.
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