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ON THE UNIT DISK

Ali̇ Si̇nan Sertöz

Abstract. We give explicit formulas, without using the Poisson integral,
for the functions that are C-harmonic on the unit disk and restrict to a

prescribed polynomial on the boundary.

1. Introduction

It is known that the special Dirichlet problem in R2, which asks if there is
a harmonic function on the unit disc that extends continuously on the bound-
ary to a given continuous function has an affirmative answer via the Poisson
integral. (Such functions are called C-harmonic.)

It is however surprising that an explicit and highly symmetric formula exists
for the solution of the Dirichlet problem on the unit disc for polynomials, and
it is this formula that we share in this paper.

A concise summary of what is known in this direction is as follows. It is
known for example that if the boundary condition is a polynomial, then the
solution function is also a polynomial, see [1, Theorem 5.1]. Moreover in [4]
the unit circle is replaced by some real algebraic curve and the polynomial
solutions to the Dirichlet problem are classified in this new set-up. When the
disc is replaced by a connected bounded domain in the plane, the same problem,
this time with rational boundary data, is discussed explicitly in [5]. Further,
in [2, 3], a characterization of the disc is given as the only domain where the
Dirichlet problem can be solved by certain algebraic functions. For some of the
the higher dimensional aspects of the theory we refer to [6].

The bases for harmonic polynomials is well known in the literature but
for the explicit determination of the coefficients the literature gives only algo-
rithms, see for example the appendix in [1]. Here we show that these coefficients
can be analytically determined, see Theorem 2.1. The required coefficients are
closely related to expansions in terms of Chebyshev polynomials.

Received January 30, 2014.

2010 Mathematics Subject Classification. Primary 31A25; Secondary 31A05.
Key words and phrases. harmonic polynomials, Dirichlet problem.

c©2014 Korean Mathematical Society

415
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2. Main results

We let Ω = {z ∈ C | |z| < 1} denote the unit disc, where z = x + iy is the
complex variable as usual. Define CH(Ω) to be the set of functions which are
continuous on the closed disc Ω and are harmonic on Ω. Let ∂Ω be the unit
circle |z| = 1.

Given a polynomial PN (x, y) of degree N ≥ 0, we want to find a function
F (x, y) ∈ CH(Ω) such that F (x, y)|∂Ω = PN (x, y)|∂Ω. Since y2 = 1 − x2 on
∂Ω, it suffices to take

PN (x, y) = α0 +

N∑
i=1

(αix
i + βiyx

i−1),

where αi and βi are complex constants. Suppose now that there exist functions
un(x, y), vn+1(x, y) ∈ CH(Ω) such that

un(x, y)|∂Ω = xn and vn+1(x, y)|∂Ω = yxn, n = 0, 1, . . . .

Then the unique solution to the above Dirichlet problem is given by

F (x, y) = α0 +

N∑
i=1

(αiui(x, y) + βivi(x, y)).

The usual Poisson integral determines un(x, y) and vn(x, y) as

un(r cos t, r sin t) =
1

2π

∫ 2π

0

cosn θ (1− r2)

1− 2 cos(θ − t) + r2
dθ,

and

vn+1(r cos t, r sin t) =
1

2π

∫ 2π

0

cosn θ sin θ (1− r2)

1− 2 cos(θ − t) + r2
dθ,

where |r| < 1 and n = 0, 1, . . . .
While absolutely correct, these integrals are formidable to evaluate explic-

itly. Instead we will construct un(x, y) and vn(x, y) directly from the real and
imaginary parts of zk, k = 0, 1, . . . , n as follows. First let

ϕk(x, y) =


Re(x+ iy)k if k ≥ 1,

1 if k = 0,

0 if k < 0

and

ψk(x, y) =

{
Im(x+ iy)k if k ≥ 1,

0 if k ≤ 0.

Clearly each ϕk(x, y) and ψk(x, y) is harmonic on the whole plane, being the
real or imaginary part of the entire function (x+ iy)k.

We can now state the explicit expressions of un(x, y) and vn(x, y) as linear
combinations of ϕk(x, y) and ψk(x, y). Clearly

u0(x, y) = 1, u1(x, y) = x, v1(x, y) = y, and v2(x, y) = xy.
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In general we have the following theorem.

Theorem 2.1. For each n ≥ 0, the unique functions un(x, y) and vn(x, y) in
CH(Ω) satisfying

un(x, y)|∂Ω = xn, and vn+1(x, y)|∂Ω = yxn

are given as, for n ≥ 0,

(2.1) un(x, y) =
1

2n−1

bn−1
2 c∑

k=0

(
n− 1

k

)
(ϕn−2k(x, y) + ϕn−2k−2(x, y)) ,

and for n ≥ 1,

(2.2) vn(x, y) =
1

2n−1

bn−1
2 c∑

k=0

(
n− 1

k

)
(ψn−2k(x, y)− ψn−2k−2(x, y)) .

Note that the statements of the above theorem are equivalent to the following
equalities which will be more convenient to refer to during the proof. Equation
(2.1) is equivalent to

(2.3) un(x, y) =
1

2n−1

bn2 c∑
k=0

(
n

k

)
ϕn−2k(x, y)− εn

2n

(
n

bn2 c

)
,

where n = 0, 1, . . . , and

(2.4) εn =

{
1 if n is even,

0 if n is odd.

For vn(x, y), Equation (2.2) is equivalent to

(2.5) vn(x, y) =
1

2n−1

bn2 c∑
k=0

n− 2k

n

(
n

k

)
ψn−2k(x, y),

where n = 1, 2, . . . .

3. Chebyshev polynomials

In this section we remind some basic facts about Chebyshev polynomials of
the first and second kinds which we will use in the next section. For details we
refer to two sources [7] and [8], one classical and one recent.

Since each ψk(x, y) is divisible by y, we define a new polynomial ψ̃`(x, y) by
the relation

(3.1) ψk(x, y) = ψ̃k−1(x, y) y, k = 0, 1, . . . .

Moreover since the power of y in each monomial of the polynomials ϕk(x, y)

and ψ̃k(x, y) is even, by restricting these polynomials to the unit circle |z| = 1
by putting y2 = 1− x2, we obtain two types of polynomials of x as follows.

(3.2) Tk(x) := ϕk(x,
√

1− x2), k = 0, 1, . . . ,
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and

(3.3) Uk(x) := ψ̃k(x,
√

1− x2), k = −1, 0, . . . .

Using the obvious relations

ϕn+1(x, y) = xϕn(x, y)− yψn(x, y)

and

ψn+1(x, y) = xψn(x, y) + yϕn(x, y),

we obtain

ϕn+1(x, y) = xϕn(x, y)− y2ψ̃n−1(x, y)

and

ψ̃n(x, y) = xψ̃n−1(x, y) + ϕn(x, y).

Restricting these equations to the unit circle by putting y2 = 1− x2 we get

Tn+1(x) = xTn(x)− (1− x2)Un−1(x)

and

Un(x) = xUn−1(x) + Tn(x).

Since we already have T0(x) = 1 and U−1(x) = 0, we conclude that Tn(x) and
Un(x) are the Chebyshev polynomials of the first and second kinds, respectively.

Chebyshev polynomials of the first and second kinds are related to each
other by the identity

(3.4)
d

dx
Tn(x) = nUn−1(x) for n = 0, 1, . . . .

4. Proof of the main theorem

In this section we prove Theorem 2.1.
We start by noting that the leading monomial in Tn(x) is xn, and only mono-

mials of the form xn−2k appear with a non-zero coefficient in the expression of

Tn(x), where 0 ≤ k ≤ bn2 c. Therefore we can find constants c
(n)
n−2k such that

(4.1) xn =

bn2 c∑
k=0

c
(n)
n−2k Tn−2k(x).

Using these constants, we define a function

(4.2) un(x, y) =

bn2 c∑
k=0

c
(n)
n−2k ϕn−2k(x, y).

The function un(x, y), being a linear combination of harmonic functions, is
itself harmonic in the plane. Moreover un(x, y) restricts to the function xn on
the unit circle as seen from Equations (3.2) and (4.1). From the uniqueness
of the solution to the Dirichlet problem, the function un(x, y) is the sought
for function of the theorem. Therefore it remains to determine the coefficients
c
(n)
n−2k.
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But these coefficients are well known, see for example [7, Equation (2.14)].
We know that for n ≥ 1,

(4.3) c
(n)
n−2k =

1

2n−1

(
n

k

)
for k = 0, . . . , bn

2
c − 1,

and

(4.4) c
(n)
n−2k =

1

2n−1
(1− εn

2
)

(
n

bn2 c

)
for k = bn

2
c.

Finally putting these coefficients into Equation (4.2) we obtain Equation (2.3),
and a rearrangement of the terms gives Equation (2.1) of the theorem.

Next we determine the function vn(x, y).
As we did above, examining the nature of the Chebyshev polynomials of the

second kind, we can find coefficients d
(n)
n−2k such that for all n ≥ 1, we can write

(4.5) xn−1 =

bn2 c∑
k=0

d
(n)
n−2k Un−2k−1(x).

Now we define a function vn(x, y) as

(4.6) vn(x, y) =

bn2 c∑
k=0

d
(n)
n−2k ψn−2k(x, y).

Clearly, this function is harmonic and restricts to xn−1y on the unit circle

for n ≥ 1. It remains to determine the coefficients d
(n)
n−2k. For this take the

derivative of both sides of Equation (4.1) with respect to x, and use Equation
(3.4) to get

(4.7) xn−1 =

bn2 c∑
k=0

n− 2k

n
c
(n)
n−2kUn−2k−1(x).

Comparing the coefficients of Equations (4.5) and (4.7), we find that, for 0 ≤
k ≤ bn2 c,

(4.8) d
(n)
n−2k =

n− 2k

n
c
(n)
n−2k =

1

2n−1

n− 2k

n

(
n

k

)
,

where we used Equation (4.3) in the second equality. Note that we need not

determine d
(n)
0 in case n = 2k, since in that case Un−2k−1(x) = U−1(x) = 0.

Finally substituting the value of d
(n)
n−2k from Equation (4.8) into Equation (4.6)

we get Equation (2.5) which in turn is equivalent to Equation (2.2). This then
completes the proof of the theorem. �

Remark. The apparent symmetry between Equations (2.1) and (2.2) seems to
be lost between Equations (2.3) and (2.5). However the symmetry continues
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between them once we notice that for all n ≥ 1 and 0 ≤ k ≤ bn2 c,(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
,

n− 2k

n

(
n

k

)
=

(
n− 1

k

)
−
(
n− 1

k − 1

)
.

In particular

un(x, y) =
1

2n−1

bn2 c∑
k=0

′
[(
n− 1

k

)
+

(
n− 1

k − 1

)]
ϕn−2k(x, y),

where
∑′

means that the last term must be halved if n is even, and

vn(x, y) =
1

2n−1

bn2 c∑
k=0

[(
n− 1

k

)
−
(
n− 1

k − 1

)]
ψn−2k(x, y),

where n = 1, 2, . . . .
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