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1. Introduction 
Recent body of empirical evidence indicates that variance shifts (nonstationary volatility) is a 

common occurrence in macroeconomic and financial data; see Busetti and Taylor (2003), 

McConnell and Perez-Quiros (1998) and Sensier and Van Dijk (2004). This finding coupled with 

nonstationarity in the levels of these types of data led the researchers to investigate the impact of 

variance shifts on unit root tests. In one of these studies, Cavaliere and Taylor (2007), henceforth 

CT, document that under nonstationary volatility, the asymptotic distributions of standard unit root 

tests are altered by the inclusion of a new nuisance parameter called the "variance profile", leading 

to size distortions in these tests. In order to achieve correct inference, CT suggest first consistently 

estimating this nuisance parameter and then updating the asymptotic distribution of Phillips and 

Perron’s (1988) tests with this estimate. While their inclusion of the new nuisance parameter 

generates significant gains in size over classical unit root tests, they still rely on the methodologies 

used in earlier studies to correct for other nuisance parameters such as serial correlation in errors. 

CT adjust their test statistic via the estimation of the long run variance, obtained by a 

semi-parametric kernel or a parametric ADF based regression estimation. The success of these 

methods highly depends on lag length, bandwidth and Kernel selection in terms of finite sample 

properties. In this paper, we propose a nonparametric unit root test that is robust to nonstationary 

volatility problem yet does not require a long run variance estimation. 

 

We derive our test statistic by modifying Nielsen’s (2009) nonparametric variance ratio statistic 

with the nonparametric variance profile estimator of CT. Computation of the proposed test statistic 

involves a fractional transformation of observed series, but it does not require any parametric 

regression or the choice of any tuning parameters like lag length and bandwidth. Therefore, we not 

only modify Nielsen’s test to be robust against nonstationary volatility, but also improve on the 

finite sample properties of CT statistic for various types of serial correlation, especially where short 

run cycles are strong. Derivation of the limiting distribution of fractionally integrated processes 

with nonstationary volatility and the proofs are placed in the Appendix.
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2. Model and Variance Ratio Test 

  

2.1. Model 

Let  
=0

T

t t
x  be generated by:  

 =t t tx y     (1) 

 1=t t ty y u    (2) 

 = ( )t tu C L   (3) 

 =t t te   (4) 

where (0,1)te iid  and t   is the deterministic term and ( )C L  is the lag polynomial. From 

CT, we have following assumptions:  

Assumption. .1  The lag polynomial ( ) 0C L   for all | | 1L  , and 
=0

| |<jj
j c


 . 

| | < <r

te K   for some 4r  . 

                                                      
1 The notation in the paper follows Cavaliere and Taylor (2007). 
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.2    satisfies | | 1  . 

.3  t  satisfies := ( )
Ts

s 
 

 for all [0,1]s , where (.)   is non-stochastic and strictly 

positive with for < 0t , * <t   .  

 

The assumptions .1  and .2  are very standard in unit root testing literature. CT characterizes 

the dynamics of innovation variance in .3 , which should be bounded and display a countable 

number of jumps.  

A fundamental object that is defined in CT is given below:  

 

1
1

2 2

0 0

( ) := ( ) ( )

s

s r dr r dr  



   
   
   
   (5) 

This object is referred to as the variance profile of the process. Further, CT shows that 
1

2 2

0
( ) =r dr   is the limit of 1 2

=1

T

tt
T   . 

 

2.2. Variance Ratio test under nonstationary volatility 

 

So as to modify the Variance Ratio test (Nielsen, 2009) statistic we first need the fractional partial 

sum operator for some > 0d :  

 
1

=0 =0

( )
:= = (1 ) = = ( )

( ) ( 1)

t t k
d d

t t t t k k t k

k k

k d
x x L x x d x

d k


 
 

   

 
 

  
   (6) 

where (.)  is gamma function. Under the assumptions , following Lemmas hold:  

Lemma 1. Assume that  
=0

T

t t
u  is generated by (3)-(4) and =1 /c T   with 0c  . 

  

i. 1/2 ( )

=1
( ) = (1) ( )

Tt wc Tt k c

T kk
y t T e u C J t

      , where
0

( ) = ( ( )) ( )
t

cJ t exp c t s dB s    and 

1

0
( ) = ( ) ( )

s

B s r dB r  

 .  

ii. ( ) = ( ) := ( ( ))B s B s B s    where ( )B s  variance transformed Brownian motion, ( )s  is 

defined in (5). Thus, 
0

( ) := ( ) = ( ( )) ( )
t

c cJ t J t exp c t s dB s    . 

iii. ,( ) = ( ) (1) ( )
wd d c

T T dy t T y t C J t 

  , where 1

,
0

( ) = ( 1) ( ) ( )
t

c d c

dJ t d t s dJ s 

   . Further, 

we have , ,( ) = ( )c c

d dJ t J t  .  

   

Remark 1. Lemma 1.(i) and 1.(ii) are from Cavaliere (2005) and CT. Lemma 1.(iii) is new and 

establishes weak convergence for fractionally integrated processes with non-stationary volatility. 

Although Demetrescu and Sibbertsen (2014) models the fractional integrated process with 

non-stationary volatility, they do not establish weak convergence of this object.  

 

Remark 2. Note that under the null hypothesis of = 1  or = 0c  the above variance transformed 

Uhlenbeck-Orstein process becomes a variance transformed Brownian motion. For instance, 

under the null the partial sum process ( )Ty t  will converge to 
0

(1) ( ) ( )
t

dC t s dB s   where we 



can define ,
0

( ) := ( ) ( )
t

d

dB t t s dB s  . This limiting distribution resembles the type II fractional 

Brownian motions defined by Marinucci and Rabinson (2000), since , ( )dB t  does not contain any 

pre-historic influence (see also Wang et al. (2002)).  

 

Like Nielsen (2009), we apply OLS detrending to the observed series tx  to clean out the 

deterministic terms. Let ˆ
tx  be the OLS detrended residuals and defining ˆ ˆ= d

t tx x

 , our test 

statistic is then given by:  

 

2

=1

2

=1

2

ˆ

ˆ

( ) =

T

t

t

T

t

t

d

x

x

d T



 (7) 

 

Theorem 1. Assume that the time series { }tx  is generated by equations (1)-(4) and =1 /c T   

for 0c  . Let = 0j  when = 0t , = 1j  when = 1t  and when = [1, ]t t   for > 0d  

i. 
,

ˆ ( ) ( )
w

c

T j
x t J t


  where   

1
1 1

,
0 0

( ) = ( ) ( ) ( ) ( ) ( ) ( )
c c c

j j j j j
J t J t J s D s ds D s D s ds D t
  



     for = 1,2j , 

and 1( ) = 1D s , 2( ) = [1, ]D s s   and ,0( ) = ( )c cJ t J t  .  

ii. 
, ,

ˆ ( ) ( )
w

c

T d j
x t J t


  where   

11
1 1

, , , ,
0 0 0

( )
( ) = ( ) ( ) ( ) ( ) ( ) ( )

( )

d
t

c c c

d j d d j j j j

t r
J t J t J s D s ds D s D s ds D r dr

d
  

 
 


    

for = 1,2j . Further , ,0 ,( ) = ( )c c

d dJ t J t   

iii. 

1 1
2 2 22

, ,2 =1 0 0
, 1 12 2 2 2

, , , ,=1 0 0

( (1)) ( ) ( )ˆ
( ) = ( ) = =

ˆ ( (1)) ( ) ( )

w
T c c

j jtd t
jT

c c
t d j d jt

C J s ds J s dsx
d T U d

x C J s ds J s ds

 

 

 







  

  
.  

   

Remark 3. Note that short run dynamics cancel out in asymptotic distribution since the numerator 

and the denominator share the same long run variance component in part (iii). 

  

2.3. Simulated Asymptotic distribution 

The test statistic obtained in Theorem 1 involves ( )s  as nuisance parameter which can be 

consistently estimated by modifying the nonparametric estimator in CT:  

 

2 2

1
=1

2

=1

ˆ ˆ( ) ( )( )

ˆ( ) :=

ˆ( )

Ts

t Ts
t

T

t

t

x Ts Ts x

s

x



 

 
     






 (8) 

 

Theorem 2. Under the conditions of Theorem 1   

i. (CT shows)
ˆ( ( / )1/2

ˆ, =1
( ) : ( )

wTs T T

tT t
B s T e B s





   
   

ii. ˆ ˆ ,, , ,( ) : ( ) ( )
w

d d

dd T TB s T B s B s 

 

     



  

After obtaining the consistent estimate for ( )s , we can simulate the asymptotic distribution and 

the critical value for the test statistic. First, we choose a step level N. For = /s j N  for 

=1,2,...,j N , then we compute ˆ( / )Ts T    using (8). By drawing te  from (0,1)N , we obtain 

ˆ, ( )TB s . Then applying fractional integration operator d

  to this object and multiplying it by 

dT  , we get ˆ, , ( )d TB s . This asymptotic distribution is then used to generate the critical values for 

the test. The proposed test rejects the null hypothesis for large values the test statistic, that is, we 

reject if ( )d  is greater than (1 )  quantile of , jU . 

 

3.  Monte Carlo Experiments 

 

In the Monte Carlo simulations, data is generated according to equations (1)-(4) with 

 = 100,500T . We consider following specifications for error term variance:   

i. Constant volatility (CV): ( ) = 1s  for [0,1]s  and 0 > 0 . 

ii. Single break in volatility (SBV): ( ) =1 2*1( > 0.2* )s s T   for [0,1]s . 

iii. Trending volatility (TV): ( ) =1 2*s s   for [0,1]s . 

iv. Exponential integrated Stochastic volatility (EISV): 0( ) = exp(4 ( ))s B s   for [0,1]s  where 

( )B s  is standard Brownian process.  

The innovations te are drawn from (0,1)N . All simulations are conducted =10000MC  times. We 

fix the step size N  to T  in simulating the variance shifted Brownian motions. We consider four 

scenarios for serial correlation in innovations. First one does not contain any serial correlation. In 

second, tu  follows a simple AR(1) model: 1= 0.5t t tu u   , third is an ARMA(2,2) process: 

1 2 1 2= 0.1 0.07 0.4 0.2t t t t t tu u u          . Last one follows a MA(2) process;

1 2= 0.2 0.15t t tu     . We fix  = 1,0.93,0.86 . = 0  indicates size and other values are for 

power evaluation. We also provide simulation for Cavaliere and Taylor (2007) S

tMZ  test.
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Table 1: Empirical Size and Power with No serial correlation 

  ( )d

  

S

t
MZ  

  = 1  = 0.93  = 0.86  = 1  = 0.93  = 0.86  

CV T=100 0.043 0.353 0.726 0.003 0.035 0.076 

 T=500 0.048 0.990 1.000 0.046 1.000 1.000 

SBV T=100 0.049 0.294 0.64 0.029 0.277 0.647 

 T=500 0.052 0.976 1.000 0.043 0.997 0.999 

TV T=100 0.053 0.370 0.762 0.028 0.339 0.747 

 T=500 0.050 0.992 1.000 0.042 0.999 1.000 

EISV T=100 0.045 0.233 0.534 0.021 0.110 0.298 

 T=500 0.049 0.939 0.999 0.041 0.903 0.951 

 

                                                      
2 The confidence level is 0.05 and there is no trend and mean components.  d is fixed to 0.1 as recommended in Nielsen (2009). For formula and 

asymptotic distribution of 
s

tMZ test see CT. In fact, CT propose 3 different test statistic, but we only give the results of the best performing one from 

among these tests. For selection of lag length, we utilize MAIC proposed by Ng and Perron (2001). Simulation results for different serial correlation 

specifications will be provided by the authors upon request.  

 



Table 2: Empirical Size and Power with AR(1) innovations 

  ( )d

  S

t
MZ  

  = 1  = 0.93  = 0.86  = 1  = 0.93  = 0.86  

CV T=100 0.028 0.209 0.505 0.041 0.343 0.654 

 T=500 0.037 0.975 1.000 0.046 0.999 1.000 

SBV T=100 0.029 0.171 0.390 0.040 0.272 0.530 

 T=500 0.044 0.952 0.999 0.051 0.997 0.999 

TV T=100 0.027 0.271 0.556 0.032 0.329 0.615 

 T=500 0.045 0.977 1.000 0.048 0.999 1.000 

EISV T=100 0.028 0.114 0.311 0.032 0.133 0.261 

 T=500 0.037 0.897 0.993 0.037 0.897 0.957 

 
Table 3: Empirical Size and Power with ARMA(2,2)innovations 

  ( )d

  S

t
MZ  

  = 1  = 0.93  = 0.86  = 1  = 0.93  = 0.86  

CV T=100 0.047 0.335 0.695 0.015 0.161 0.519 

 T=500 0.050 0.989 1.000 0.043 0.999 1.000 

SBV T=100 0.039 0.286 0.619 0.014 0.116 0.367 

 T=500 0.042 0.973 1.000 0.042 0.995 1.000 

TV T=100 0.046 0.365 0.747 0.015 0.193 0.513 

 T=500 0.045 0.990 1.000 0.04 0.999 1.000 

EISV T=100 0.049 0.225 0.518 0.017 0.068 0.158 

 T=500 0.049 0.933 0.998 0.04 0.888 0.954 

 
Table 4: Empirical Size and Power with MA(2) innovations 

  ( )d

  S

t
MZ  

  = 1  = 0.93  = 0.86  = 1  = 0.93  = 0.86  

CV T=100 0.044 0.348 0.733 0.023 0.272 0.6680 

 T=500 0.050 0.990 1.000 0.037 1.000 1.000 

SBV T=100 0.047 0.305 0.618 0.021 0.193 0.533 

 T=500 0.046 0.972 1.000 0.037 0.997 0.999 

TV T=100 0.049 0.383 0.765 0.018 0.245 0.661 

 T=500 0.053 0.991 1.000 0.042 0.999 1.000 

EISV T=100 0.047 0.348 0.726 0.021 0.237 0.609 

 T=500 0.054 0.937 0.999 0.041 0.900 0.949 

 

 

4.  Conclusion 

 
Simulation evidence suggests the proposed nonparametric unit root test has desirable size and 

power properties in all scenarios. Especially in no serial correlation case, our test almost dominates 

CT’s test in terms of size. Furthermore, small sample properties of our test are better than CT’s 

tests when complicated serial correlation structures are considered with a short run cycles (MA 

component). 
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6. Appendix 

 
Proof of Lemma 1: Part (i) can be found in Theorem 1 of CT and Remark 3.1. Part (ii) is from 

Proposition 3 of Cavaliere (2005) 

 

For part (iii), write the partial sum process for ty  as:  

 1/2

=1

( ) = ( )
Tt

d

T kTt k
k

y t T d y
 

 

   



where 
( )

( ) =
( ) ( 1)

k

k d
d

d k


 

  
, and Wang et al. (2000) claims that 

=0

( ) = ( 1)
m

j m

j

d d   , thus we 

have: 

 

   

1/2

=1

1/2 1/2

=1 =1 =1

1/2 1/2

=1 =1

( ) ( )

( ) ( 1)

/

( 1) ( 1)

Tt k
d

T kTt k
k j

Tt k Tt
d d

k kTt k Tt k
k j k

d
dTt Tt

d

k k

k k

y t T d u

T d u T d u

Tt k t k T
T u T y

d d



 

 
 

 

   
   

   

   
  



  

   
  

   

 

 

 

 

  

here ky  can be written as 

/

( 1)/

( )

k T

T

k T

dy s


  in the limit (see Phillips (1987). Then, 

 
   / /

=1 =1( 1)/ ( 1)/

/ /
( ) = ( ) = ( )

( 1) ( 1)

d dk T k TTt Tt

T T T

k kk T k T

t k T t k T
y t dy s dy s

d d

   

 

 

   
    (9) 

 
 

0 0

(1)
( ) ( ) ( )

( 1) ( 1)

w w
dt t

d c

T

t s C
dy s t s dJ s

d d
 




      (10) 

   

Proof of Theorem 1: To prove part (i), consider the residuals from the regression of t  on tx  for 

=1t T , for [0,1]s : 

 ˆˆ = ( )
Ts Ts Ts

x y   
     

   (11) 

 
1/2 1/2 1/2 ˆˆ = ( )

Ts Ts Ts
T x T y T     

     
   (12) 

We have already establish limiting distribution for first factor on the left hand side of equation (12)

. This factor also corresponds to the case when 0t  . For second factor, define ( ) =1N T  when 

= 1t  and 1 0
10

( ) =
T

N T 
 
  

 when = [1, ]t t   and from Nielsen (2009): 

 

 
1/2 ˆ( )

Ts
T   

 
  

 

1

1 1/2 1

=1 =1

= ( / ) ( / ) ( / ) ( ) ( / )
T T

s j j j j

t t

T T y D s T T D s T D s T N T D Ts T



    
    

  
   

by application of CMT and ( / ) ( )jD Ts T D s    we have 

  
1 1

1
1/2

0
0

ˆ( ) (1) ( ) ( ) ( ) ( ) ( )
w

c

j j j jTs
T C J r D r dr D r D r dr D s   




 


 
  

 
   

Finally we have  

  
1 1

1
1/2

0
0

ˆ (1) ( ) (1) ( ) ( ) ( ) ( ) ( )c c

j j j jTs
T x C J s C J r D r dr D r D r dr D s  




 

 
   

 
   (13) 

For part (ii) We can write the partial sum process to find the limits  



 1/2 1/2 1/2
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First factor converges by Lemma 1 part (iii). The second factor:  
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The convergence for 
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  is already proved by Nielsen (2009), that is  
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Part (iii), is derived by application of CMT using the objects we found in parts (i)-(ii). 

 

Proof of Theorem 2. Part (i) directly follows from Theorem 3 of CT. 

 For part (ii), define the partial sum 1/2
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Note that from equation (10) we have: 
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TS Ts T T B s   . From CMT we obtain the result.   


