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Theoretical Underpinnings 

Introduction and Overview 
 
This Reference Guide is intended to serve as a primer or overview of what we mean by 
efficiency measurement and productivity measurement—it provides the theoretical 
underpinnings of the efficiency and productivity measures included in OnFront.  It is designed to 
be self-contained and user friendly; however, it could also be read in conjunction with more 
detailed discussions such as Production Frontiers [1994] by Färe, Grosskopf and Lovell and 
Intertemporal Production Frontiers: With Dynamic DEA [1996] by Färe and Grosskopf. 
 
 Simply put, efficiency and productivity measurement tell us about how well a firm (or an 
agency or even a country) is doing relative to some benchmark.  For example, we may wish to 
know if a particular school district could get more ‘bang for the buck’ or whether a hospital or 
government office could provide their current service levels at lower cost.  As these examples 
suggest, we would like our measures to be very flexible—capable of assessing performance even 
in cases where the usual economic or financial signals like profit or revenues are nonexistent or 
inappropriate.  The models and techniques used in OnFront provide you with this capability. 
 
 An important feature of this approach is that performance is judged in a relative way.  
OnFront constructs a benchmark for each individual operation that is based on actual observed 
achievements in similar operations.  We call this benchmark the best practice frontier.  Section 1 
describes in more detail how this best practice frontier is constructed from your data and what it 
looks like.  Included in this section are various characteristics the benchmark may satisfy, 
including various types of returns to scale and disposability. 
 
 After showing how OnFront constructs the benchmark technology, we turn to the various 
measures of efficiency and productivity that are available in OnFront.  There are a number of 
possibilities, which provide you with a range of choices which vary in terms of the type of data 
required, and also provide a range of goals or models.  For example, if you are looking at 
pharmacies in Sweden (where the government agreement requires that pharmacies provide 
quality drugs at lowest cost), it seems reasonable to judge relative performance on that basis.  
That is, given the level of drugs and services provided at acceptable quality levels, benchmark 
pharmacies will be those that achieve that goal at lowest cost. 
 
 More specifically, we begin with what we call input-saving measures of efficiency. Here 
benchmark firms are those that produce a given level of goods and services with the fewest 
resources or lowest cost. Section 2 begins with input-saving technical efficiency, which requires 
no information on prices, costs or revenues, and proceeds to cost efficiency, which does require 
information on input prices.  Included in this section are various decompositions of the efficiency 
measures. 
 
 Next we turn to output-oriented measures of efficiency. Here the idea is that for a given level 
of resources used, benchmark firms are those that get the most out of them.  Again, we can 
measure this in terms of input and output quantities, with no information on prices or revenues 
(technical efficiency), or we can compute revenue efficiency if price information is available. 
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 In Section 4 we turn to productivity measurement, which in our framework, is actually an 
extension of efficiency measurement to include performance measurement over time. 
 
 In Section 5 we include a discussion of our measures of capacity and capacity utilization. 
 
 

1. Benchmarks:  The Best Practice Frontier 
 
In this section we show how OnFront identifies benchmark firms or observations and uses them 
to construct what we call the best practice frontier.  This is sometimes also referred to 
as the reference technology, production frontier or just technology.  A particular technology can 
be constructed for banks, farms, pharmacies, unemployment offices or any decision-making units 
(DMU) that use resources (inputs) to produce outcomes (outputs). 
 
 Typically the frontier is constructed from observations of what we call inputs and 
outputs.  There can be any number of inputs (let’s say that there are Nn ,...,1= different types of 
inputs), which we will write (individually) as 
 

Nnxn ,...,1, =  

 
or if we are referring to all the different types of input employed we write this vector of inputs as 
 

).,...,( 1 Nxxx =  
 
 For each of these inputs, you would have data which would be some nonnegative 
number.  As an example, for farms, inputs would include the data you have on acres of land, 
hours of farm labor, seed, etc.  For a study of unemployment offices inputs might include 
managers, square meters of office space, etc.  As a general principle, these inputs should include 
all of the resources used by the DMU, and they should be measured as accurately as possible—
mistakes in the data (which can create what are called ‘outliers’) can affect your results. 
 
 Turning to outputs, again we allow for many types of output for any DMU; here we 
assume there are Mm ,...,1= of them, denoted individually as 
 

Mmym ,...,1, =  
 
or if we are referring to all the different types of output produced we write this vector of outputs 
as 
 

).,...,( 1 Myyy =  
 
 Again, the data for these outputs should be nonnegative numbers.  For our farming 
example, outputs might include bushels of corn, wheat, etc.  Outputs from an unemployment 
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office might include job placements, placements in training programs, etc.  Generally, you 
should include all relevant outputs and services produced or provided by your DMU’s. 
 
 In constructing the best practice frontier and identifying benchmark firms, we assume 
that your data includes a number of DMU’s or observations; here we assume that there are 
 

Kk ,...,1=  
 
of them.  For example, we would say that we have K different observations of unemployment 
offices.  Each observation would include data on all inputs and outputs, i.e., 
 

),...,( 1 kNk
k xxx =  

 
and 
 

),,...,( 1 kMk
k yyy =  

 
where, for example, knx  is the amount of the thn  input used by the thk  unemployment office, and 

1ky  is the amount of the first service that is produced by k . 
 

Types of Reference Technologies 
 
A reference technology or best practice technology may be expressed in three equivalent ways, 
including 
 

• an Input Requirement Set )(yL  that shows all the combinations of inputs that can be used 
to produce the output vector y , 

• an Output Possibility Set )(xP  which shows all the combinations of outputs that can be 
produced by the input vector x , 

• a Graph GR  which shows the combinations of inputs x  and outputs y  that are 
technically feasible. 

 
Again, these are all equivalent, but can be used to illustrate different aspects of 

production. 
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Numerical Example: The Input Requirement Set 
 
We begin with the Input Requirement Set, which is particularly useful in illustrating input 
substitution possibilities.  We construct input requirement sets from the data or observations of 
inputs and outputs, .,...,1),,( Kkyx kk =   This technology can be constructed from your data 
using what we call activity analysis.  It can be written in the following way 
 

:),...,{(),|( 1 NxxSCyL =  (1) 

    ,,...,1,
1

Mmyyz mkmk

K

k

=>∑
=

 

    ,,...,1,
1

Nnxxz nknk

K

k

=<∑
=

 

    },,...,1,0 Kkzk =>  

 
where the Kkzk ,...,1, =  are what are referred to as the intensity variables.  We will show below 
what role they play in constructing the reference technology. 
 

Before we discuss the role of the C  and S  in (1), let’s construct a reference technology 
using some real numbers, based on the table below. 
 

Firm 
(DMU) 

Input 1 

1x  
Input 2 

2x  
Output 

y  

1 1 2 1 
2 2 1 1 
3 2 2 1 
Table 1: Data for a Best Practice Technology 

 
The table shows that there are three firms (DMU’s) that use two inputs 1x  and 2x  to 

produce a single output y .  The amount of input one used by firm two is 221 =x , for example. 
 

In order to illustrate how the best practice technology can be constructed from the data in 
Table 1 we use both a diagram and explicit equations based on the data.  In equation form, using 
the data from the table and substituting into the equations in (1), we get 
 

:),{(),|( 21 xxSCyL =  (2) 
                                                                                                   ,111 321 yzzz >++         (a) 

                                                                                                   ,221 1321 xzzz <++      (b) 

                                                                                                   ,212 2321 xzzz <++      (c) 

                                                                                                  },0,0,0 321 >>> zzz  
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and the diagram is given below. 
 

 
 

0 
 

  1                              2 
 

2 
 

1 
 

L(1|C,S) 
 

C 
 

C 
 

C 
 1 

 

2 
 

3 
 

 
 

x2

x1  
Figure 1: An Input Requirement Set 

 
 In the figure the three firms are labeled as 1, 2 and 3, where, for example, )2,1(1 =x  and 

)1,2(2 =x .  Notice that they all produce the same amount of output 1=y .  If we let the intensity 
variables take the values ,11 =z  ,032 == zz  we can see from the equations above that we will 

get back )2,1(1 =x  as a feasible member of the input requirement set ),|1( SCL .  If we instead 
set the intensity variables to the values ,12 =z  ,031 == zz  we would get back the observed 
values of x  for firm 2, i.e., the point labeled 2 in the figure.  We can also construct 
‘hypothetical’ members (including benchmark members) by varying the values of the intensity 
variables: for example if we let 2/121 == zz  and 03 =z , we will end up with a point or 
hypothetical observation that is halfway between 1 and 2 in the figure.  In fact, all convex 
combinations of DMU’s 1,2, and 3 are feasible (hypothetical) members of the input requirement 
set.  In addition, due to the inequalities (rather than strict equalities) in (b) and (c) in (2), all 
points northeast of the line segment between 1 and 2 are also feasible (but hypothetical) 
members of the input requirement set.  From the figure it is easy to see the benchmarks or 
frontier of this input requirement set: they are the points that form the ‘lower’ boundary of the 
set, i.e., they represent real or hypothetical firms that use the fewest possible inputs to produce 
the same outputs. 
 

Disposability Properties of )(yL  
 
Next we turn to a brief discussion of what we call the disposability properties of the input 
requirement set.  The inequalities (b) and (c) in (2), or more generally the Nn ,...,1=  inequalities 
in (1), model what we call Strong Disposability of Inputs, i.e., 
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),|(ˆ SCyLxx ∈>  implies that ).,|( SCyLx ∈  (3) 

 
In words this says that if inputs are either held the same or increased, then output will not 
decrease.  Strong disposability of inputs means that an increase in inputs cannot decrease, i.e., 
‘congest’ output.  What we mean by congestion is that there is ‘too much’ input.  Examples 
where too much input can actually obstruct or reduce output include traffic congestion, where 
too many cars on the road at one time leads to slower traffic. 
 
To allow for the possibility of congestion in our models we must use a different assumption 
about disposability of inputs which we call Weak Disposability of Inputs, i.e., 
 

),|( WCyLx ∈  and 1>λ  imply ).,|( WCyLx ∈λ  (4) 

 
This disposability assumption states that proportional increases in inputs do not decrease outputs.  
Note that we use a ‘W’ rather than an ‘S’ in the notation for the input requirement set to 
distinguish weak from strong disposability.  We can incorporate weak disposability into our 
activity analysis model (1) by changing the inequalities in the N input constraints to strict 
equalities, i.e., 
 

:),...,{(),|( 1 NxxWCyL =  (5) 

 ,,...,1,
1

Mmyyz mkmk

K

k

=>∑
=

 

 ,,...,1,
1

Nnxxz nknk

K

k

==∑
=

 

 }.,...,1,0 Kkzk =>  

 
Model (1) and (5) give the two extremes with respect to disposability of inputs.  In the first 
model, all of the inputs are strongly or freely disposable, while in the second none of the inputs 
are strongly disposable.  You can construct intermediate cases by restricting only some of the 
inputs to be strongly disposable, for example.  Generally speaking, if you feel that some inputs 
may be disposed of without any resource cost, then you would use inequalities for those 
constraints.  If you feel that other inputs may cause congestion, then you would use equalities for 
those constraints.  For example 
 

Nnxxz nknn

K

k

ˆ,...,1,
1

==∑
=

 (6) 

,,...,1ˆ,
1

NNnxxz nknk

K

k

+=<∑
=

 

 
where the first Nn ˆ,...,1=  inputs may cause congestion, while the NN ,...,1ˆ +  remaining inputs 
can be disposed of at no cost. 
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Modeling Returns to Scale 
 
Now we turn to what we mean by ‘C’ in ).,|( SCyL   It refers to the type of returns to scale we 
have specified for the reference technology: ‘C’ refers to Constant Returns to Scale, which is 
defined as 
 

.0),,|(),|( >= θθθ SCyLSCyL  (7) 
 
Under constant returns to scale, proportional changes in outputs require proportional changes in 
inputs.  For example, if you plan to double your outputs, under constant returns to scale you must 
double your employment of all inputs.  The particular input requirement set described in (1) 
satisfies constant returns to scale due to the restriction on the intensity variables: namely, they 
are only restricted to be nonnegative, .,...,1,0 Kkzk =>   In other words, they may be scaled up 

and down by any positive scalar θ .  In turn, they serve to scale the data up and down by that 
amount. 
 
 From economic theory we know that an organization or firm that operates under constant 
returns to scale earns zero profit (although their revenues cover all of their costs, including 
opportunity costs).  This is one of the reasons one may wish to consider allowing for alternative 
assumptions concerning returns to scale.  One alternative is to allow for a reference technology 
that exhibits Nonincreasing Returns to Scale (N), which is defined as 
 

,1    0),,|(  ),|( <<⊂ θθθ SNyLSNyL  (8) 

 
where ⊂  means included in.  In this case if you wish to scale up your outputs, then you would 
need to scale up your inputs by a larger amount.  This property can be incorporated into our 
model by changing the restriction on the intensity variables z  to add up to no more than one, i.e., 
 

:),...,{(),|( 1 NxxSNyL =  (9) 

                                                                  ,,...,1,
1

Mmyyz mkmk

K

k

=>∑
=

 

                                                                  ,,...,1,
1

Nnxxz nknk

k

k

=<∑
=

 

                                                                  }.,...,1,0,1
1

Kkzz kk

K

k

=><∑
=

 

 
To illustrate how the restrictions on the intensity variables result in constant returns to scale and 
nonincreasing returns to scale technologies, we turn to a numerical example.  Suppose we are 
given the following data in Table 2. 
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Firm 

(DMU) 
Input 

x  
Output 

y  
1 1 2 
2 2 3 

Table 2: Data to Illustrate Returns to Scale 
 
In this case we have two firms, each using one input to produce one output.  The two reference 
technologies ),|( SCyL  and ),|( SNyL  can be written in equation form as 
 

:{),|( xSCyL =  (10) 
                                                                        ,32 21 yzz >+  

                                                                        ,31 21 xzz <+  

                                                                        },0,0 21 >> zz  

 
and 
 

:{),|( xSNyL =  (11) 
                                                                         ,32 21 yzz >+  

                                                                         ,21 21 xzz <+  

                                                                         ,121 <+ zz  

                                                                         },0,0 21 >> zz  

 
 We can also illustrate this in a diagram, this time in terms of the graph (GR), which 
shows the relationship between inputs and outputs and therefore is useful in illustrating returns to 
scale. 
 
 First of all our two observations are labeled 1 and 2, respectively, in the diagram.  The 
constant returns to scale (C) technology is bounded by the x-axis and the ray through point a.  
The nonincreasing returns to scale technology is bounded by the line segments 0a, 0b, the 
horizontal extension from b and the x-axis.  The nonincreasing returns technology does not allow 
for outward scaling (like the ray extending beyond point a of the constant returns technology); it 
does allow for the convex combinations of existing observations and the origin, i.e., the radial 
contractions.  The extension beyond point b on the nonincreasing returns boundary follows from 
the inequality on the input constraint, i.e., it is due to the fact that we are allowing for strong 
disposability of inputs in (11).  From the diagram we can also see that 
 

),,|(),|( SCyLSNyL ⊂  (12) 
 
which is true in general. 
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0 
 

      1                         2                        3 
 

3 
 

1 
 

1 
 

2 
 

 
 

 
 

2 
 

C 
 

C 
 

y

b 

a 

c 

Figure 2: Constant and Nonincreasing Returns to Scale  

x

 
 
 If we restrict the intensity variables to sum exactly to one, rather than to less than or equal 
to one, we obtain what we refer to as a Variable Returns to Scale reference technology.  
Specifically, 
 

:),...,{(),|( 1 NxxSVyL =  (13) 

                                                                 ,,...,1,
1

Mmyyz mkmk

K

k

=>∑
=

 

                                                                 ,,...,1,
1

Nnxxz nknk

K

k

=<∑
=

 

                                                                 }.,...,1,0,1
1

Kkzz kk

K

k

=>=∑
=

 

 
Here the ‘V’ refers to variable returns to scale, which is obtained through the restriction 

.1
1

=∑
=

k

K

k

z   In Figure 2, the variable returns to scale technology is bounded by the x-axis starting 

at 1=x , and the line segments ca, ab and the horizontal line emanating from b.  From the 
diagram and inspection of the restrictions on the z variables, we can now summarize 
 

).,|(),|(),|( SCyLSNyLSVyL ⊂⊂  (14) 
 
We will make use of this relationship when we show how to measure scale efficiency, or 
deviations from constant returns to scale. 
 



10   THEORETICAL UNDERPINNINGS 

  

Modeling Technology with the Output Set 
 
We mentioned earlier that the input requirement set, the output possibilities set and the graph are 
all equivalent ways of describing the technology.  Here we focus on the output set, which gives 
us the set of all combinations of outputs that are producible from a given set of inputs.  For the 
case of constant returns to scale (C) and strong disposability of outputs (S), we have the 
following 
 

:),...,{(),|( 1 MyySCxP =  (15) 

                                                                ,,...,1,
1

Mmyyz mkmk

K

k

=>∑
=

 

                                                                ,,...,1,
1

Nnxxz nknk

K

k

=<∑
=

 

                                                                }.,...,1,0 Kkzk =>  

 
As before ‘C’ stands for constant returns to scale, however, ‘S’ now stands for strong 
disposability of outputs.  Note that in (15) we also have strong disposability of inputs (due to the 
inequality on the input constraints), however, here we will focus on disposability of outputs.  
Strong Disposability of Outputs is defined as 
 

),|(ˆ SCxPyy ∈<  implies that ).,|( SCxPy ∈  (16) 

 
In words this says that outputs can be disposed of without cost, i.e., you can ‘freely’ dispose of 
outputs.  This free disposability follows from the inequalities on the output restrictions in (15). 
 
 Although free or strong disposability is the assumption we typically make about 
disposability of outputs, it cannot model some interesting cases where disposal is in fact costly.  
For example, coal fired electric utilities produce 2SO  as well as electricity.  Although electricity 
is likely to be freely disposable, under current environmental regulations, 2SO  is not.  To allow 
for this type of case, we introduce the idea of Weak Disposability of Outputs as 
 

If ),|( WCxPy ∈  and 10 <<θ  then ).,|( WCxPy ∈θ  (17) 

 
This says that proportional reductions of all outputs are feasible; however, it does not necessarily 
follow that reductions in individual outputs are feasible.  The proportional reduction implies that 
to reduce undesirable outputs like 2SO  is costly in the sense that it uses resources which 
otherwise could have been used to maintain or increase desirable outputs like electricity. 
 
 We can model weak disposability of outputs by replacing the inequalities for outputs in 
(15) by equalities, 
 

:),...,{(),|( 1 MyyWCxP =  (18) 
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                                                                ,,...,1,
1

Mmyyz mkmk

K

k

==∑
=

 

                                                                ,,...,1,
1

Nnxxz nknk

K

k

=<∑
=

 

                                                                ,0>kz      }.,...,1 Kk =  

 
To illustrate the difference between the two disposability ideas, we provide another numerical 
example.  The data in Table 3 is for two firms which use one input to produce two outputs. 
 

Firm 
(DMU) 

Input 
x  

Output 1 

1y  
Output 2 

2y  
1 1 3 1 
2 1 1 2 

Table 3: Data for a Best Practice Technology 
 
 The two firms in Figure 3 are represented by the points labeled b and c.  The output set 
satisfying weak disposability of outputs is bounded by 0bc0 and the output set satisfying strong 
disposability of outputs is bounded by 0abcd0.  This illustrates the following general relationship 
of inclusion, 
 

).,|(),|( SCxPWCxP ⊂  (19) 
 

 
 

0 
 

  1                              2 
 
 

2 
 
 

1 
 
 

c 
 
 

C 
 
 

C 
 
 

d 
 
 

b 
 
 

 
 
 

 
 

a 
 
 

y

2y

 
Figure 3: Output Disposability 

 
To summarize, if you wish to model the case where undesirable outputs, like waste, are produced 
simultaneously with desirable outputs, you might want to include both weak and strong 
disposability.  In this case you would require that the ‘bads’ satisfy weak disposability and the 
‘goods’ satisfy strong disposability, i.e., 
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,ˆ,...,1,
1

Mmyyz mkmk

K

k

==∑
=

 (20) 

,,...,1ˆ,
1

MMmyyz mkmk

k

k

+=>∑
=

 

 
where the first Mm ˆ,...,1=  outputs may cause congestion, while the MM ,...,1ˆ +  remaining 
outputs can be disposed of at no cost. 
 
 Next we turn to modeling returns to scale with the output set.  This is exactly analogous 
to the way we modeled returns to scale using the input requirement set, namely by changing the 
restrictions on the z  or intensity variables.  This is summarized in the table below. 
 

 
Technology 

Returns 
To Scale 

Restriction 
On z ’s 

 

),|( SCxP  C  ,0>kz  Kk ,...,1=  

 
),|( SNxP  

 
N  ,0,1

1

><∑
=

kk

K

k

zz  
 

Kk ,...,,1=  

 
),|( SVxP  

 
V  ,0,1

1

>=∑
=

kk

K

k

zz  
 

Kk ,...,1=  

 
Returns to Scale and the Output Set 

 
 The restrictions for the various types of returns to scale are exactly the same as those 
required for the input sets.  This follows from the equivalence of the input and output sets. 
 
 

2.  Direct Input-Saving Efficiency Measures 
 
In the previous section we described how the reference technology is constructed from your data.  
Now we turn to the problem of measuring how well individual firms or DMU’s are doing given 
the best practice available.  Economists typically think of firms as ‘optimizing’, i.e., they have a 
goal and they make production choices to do the best they can in achieving that goal given the 
technology constraints they face.  The textbook example of a firm optimization problem is profit 
maximization.  All of the efficiency measures we discuss here are essentially consistent with that 
goal, although we will focus on more narrow aspects of that problem. 
 
 For example, the efficiency measures discussed in this section are all based on part of the 
profit maximization problem, namely the minimization of costs or resource use.  For a given 
level of production, ‘efficiency’ requires that firms use the fewest possible resources, i.e., they 
are saving or reducing inputs (costs) as much as possible.  As a consequence we refer to these as 
input-saving or input-oriented measures of efficiency.  These are in contrast to output-oriented 
efficiency measures (discussed later) where the idea is to produce as much output or revenue as 
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possible from a given level of resources.  Under certain conditions input- and output-oriented 
efficiency measures will give the same result, but in general that is not the case. 
 
 Among the input efficiency measures we distinguish between those that require data on 
prices and those that do not require price data.  The measures which require price data might be 
referred to as economic measures and those that don’t as technical measures of efficiency.  We 
begin with the ‘simpler’ measures, namely technical efficiency. 
 
 Technical efficiency is easiest to understand by way of a diagram.  Since inputs are our 
focus here, we use an input requirement set as our reference technology.  Figure 4 is a replica of 
Figure 1, where we have 3 firms or DMU’s, labeled 1, 2, and 3.  Notice that firms 1 and 2 are on 
the boundary of the input requirement set, while firm 3 is inside the boundary.  In this example it 
is clear that 1 and 2 are benchmark firms, whereas firm 3 is not.  We would say that firms 1 and 
2 are technically efficiency and firm 3 is technically inefficient.  The problem is to find a way to 
summarize how inefficient firm 3 is relative to the benchmark firms.  The reference technology 
allows us to compare firm 3 to a (in this case hypothetical) benchmark firm that has exactly the 
same mix of inputs as firm 3, namely the hypothetical firm at point b.  Point b is on the lower 
boundary of the input requirement set ),|1( SCL , i.e., it is on the best practice frontier. 
 

 
 

0 
 

  1                              2 
 

2 
 

1 
 

L(1|C,S) 
 

C 
 

C 
 

C 
 1 

 

2 
 

3 
 

 
 

x2

 
 

x1

a 

b C 
 

 
Figure 4: The Input Measure of Technical Efficiency 

 
 In choosing point b  as our comparison or benchmark, we are choosing to measure 
inefficiency in a proportional way, i.e., the mix of inputs (the ratio of 21 / xx ) is the same at point 
a and point b.  In principle, firm 3 should be able to scale down its input use to point b and still 
produce the same amount of output.  We measure technical efficiency as the greatest proportion 
that inputs could be reduced and still produce the same output.  Alternatively, it is the ratio of 
(the size of) minimal feasible input usage to (the size of) current input usage.  In our figure that is 
 

.0/0 ba  
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 This measure is usually referred to as the Farrell Input-Saving Measure of Technical 
Efficiency, and it is formally defined as 
 

)}.,|(:min{),|,( SCyLxSCxyFi ∈= λλ  (21) 
 
 To show how this could be calculated, we can use the data from Table 1 (which was used 
to construct the input requirement set in the diagram above).  We will set up the problem for firm 
3, which uses two inputs 21 =x  and 22 =x  to produce one unit of output 1=y .  For firm 3 we 
have 
 

λmin),|2,2,1( =SCFi  (22) 

    s.t.     ,1111 321 >++ zzz  

              ,2221 321 λ<++ zzz  

              ,2212 321 λ<++ zzz  

              ,0,0,0 321 >>> zzz  

 
which has a solution value of 
 

,75.0),|2,2,1( =SCFi  
 
which says that firm 3’s inputs could be scaled back by multiplying them by 0.75, which is 
equivalent to a 25% reduction.  That would give us input usage of ,5.121 == xx  which is exactly 
the amount at point b, our benchmark firm. 
 
If instead we measure the efficiency of firm 1, we would get 
 

,00.1),|2,1,1( =SCFi  
i.e., we cannot reduce firm 1’s inputs and still produce the same output, since it is a benchmark 
firm.  In general, we have the following result that 
 

,1),|,(0 << SCxyFi  (23) 

 
and we say that a firm k is technically input efficient if 
 

,1),|,( =SCxyF kk
i  (24) 

 
and inefficient if the value is less than one. 
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Input Slack 
 
Intuitively, firms are efficient if they are on the boundary of the best practice frontier, i.e., if they 
are benchmark firms.  In some cases, however, these benchmark firms may not be using the 
fewest possible inputs to produce their output.  To see what we mean, suppose we add another 
firm to our data set with the inputs and outputs listed in Table 4. 

 
Firm 

(DMU) 
Input 1 

1x  
Input 2 

2x  
Output 

y  

4 3 1 1 
Table 4: Added Data 

 
If we compute the efficiency for this additional DMU 4 relative to the reference technology 
constructed from Tables 1 and 4, it follows that 
 

.00.1),|1,3,1( =SCFi  
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Figure 5: Input Slack

 
 
However, if we look at our diagram with our additional data point added in (see Figure 5), we 
can see that firm 4 could actually produce 1 unit of y with less 1x , i.e., it could reduce 1x  by one 
unit (from 3 to 2).  This extra input is referred to as input slack (although technically what we 
have in this case is a surplus of input 1x ).  In general, we say that there is Slack in input nx  for 
firm k ′  if 
 

∑
=

′′
′<

K

k

kk
inkknk SCxyFxxz

1

),,|,(  (25) 
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is true for some solution value for kz , Kk ,...,1= . 
 

Decomposing Technical Efficiency 
 
Next we show how our input technical efficiency measure can be decomposed into components: 
scale efficiency, a measure of congestion and a residual technical efficiency component. 
 

The Scale Efficiency Component 
 
We have already shown that by changing the restriction on the intensity variables, kz , 

,,...,1 Kk =  you can change the returns to scale properties of the reference technologies.  Recall 

that if ∑
=

<
K

k
kz

1

1 we have Nonincreasing Returns to Scale (N) and if ∑
=

=
K

k
kz

1

1 we have Variable 

Returns to Scale (V).  In order to define scale efficiency we must first introduce an input measure 
of efficiency which is measured relative to a variable returns technology, ),|( SVyL , i.e., 
 

)}.,|(:min{),|,( SVyLxSVxyFi ∈= λλ  (26) 
 
If we use the data from Table 2 along with the corresponding Figure 2, we find that for DMU 1 
 

,0.1),|1,2( =SVFi  
 
and that for DMU 2, 
 

.0.1),|2,3( =SVFi  
 
This is easy to see from Figure 2.  Both DMU 1 and 2 are on the boundary of the V technology 
(bounded by cab, the extension from b and the x-axis from c outward). 
 
 It we write out the equations for the linear programming problem for DMU 2 we get 
 

λmin),|2,3( =SVFi  (27) 

  s.t.      ,332 21 >+ zz  

             ,221 21 λ<+ zz  

             ,121 =+ zz  
             01 >z , .02 >z  

 
The solution value of 1 is consistent with values of 01 =z  and 12 =z , which satisfies our 
restriction on the z variables. 
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 If we compute the efficiency scores for the same data relative to a constant returns to 
scale technology (where the z’s are only restricted to be nonnegative),we find that for DMU 1 
 

,0.1),|1,2( =SCFi  
 
and that for DMU 2, 
 

.75.0),|2,3( =SCFi  
 
In Figure 2, DMU 2 is at point b, which is not on the frontier of the constant returns to scale 
technology; for an output level of 3, a point on the C frontier would use only 1.5 instead of 2 
units of input.  In Figure 2, where we have the graph of technology, input-saving means moving 
due West in the figure. 
 
Thus DMU 1 is efficient relative to both reference technologies, and DMU 2 is efficient only 
relative to the V technology.  Since it is inefficient relative to the constant returns to scale 
technology, that means that it deviates from constant returns to scale.  This deviation is the 
intuition behind our measure of Input Scale Efficiency, which is defined as 
 

).,|,(/),|,()|,( SVxyFSCxyFSxyS iii =   (28) 
 
A DMU is scale efficient if 1)|,( =SxyS i , i.e., if ),|,(),|,( SVxyFSCxyF ii = .  This is true for 
DMU 1, while DMU 2 is scale inefficient with a score 
 

.75.0)|2,3( =SS i  
 
 The scale efficiency measure tells us whether a DMU is operating at a point where 
constant returns prevail, however, if a DMU is scale inefficient we can’t tell from the scale 
efficiency score whether that is due to the fact that they are operating at increasing or decreasing 
returns to scale.  To do so, we need a little more information.  If we compute input inefficiency 
relative to a nonincreasing returns to scale technology, ),|( SNyL , i.e., 
 

)},,|(:min{),|,( SNyLxSNxyFi ∈= λλ   (29) 
 
we can use this to identify the returns to scale.  In our example, 1),|2,3( =SNFi  for DMU 2, 
which is consistent with the following relationship. 
 

),,|,(),|,(),|,( SCxyFSNxyFSVxyF iii >>  (30) 

 
which for DMU 2 is 75.11 >> .  Since, in this case, ),|,(),|,( SNxyFSVxyF ii =  we know that 

DMU 2 is operating at a point of decreasing returns to scale, which is confirmed by referring to 
Figure 2.  In general, we can say that 
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 if ,1)|,( <SxyS i  then scale inefficiency is due to: (31) 

  increasing returns to scale if ),,|,(),|,( SCxyFSNxyF ii =  

  decreasing returns to scale if ).,|,(),|,( SCxyFSNxyF ii >  
 
Thus by computing the three efficiency measures, 
 

),,|,(),,|,(),,|,( SCxyFSNxyFSVxyF iii  
 
we can determine if a DMU is scale efficient.  If it is not scale efficient, we can determine 
whether scale efficiency is due to operation at decreasing or increasing returns to scale.  In 
addition we obtain the following decomposition of our original input-saving measure of technical 
efficiency (21) 
 

).,|,()|,(),|,( SVxyFSxySSCxyF iii ⋅=  (32) 
 
This decomposition shows that a scale efficiency measure can be extracted from ).,|,( SCxyFi   
Next we show how to also identify a congestion component. 
 

The Congestion Component 
 
In order to isolate congestion, we need to compute the following input-saving measure 
 

)},,|(min{),|,( WVyLxWVxyFi ∈= λ  (33) 
 
where the technology satisfies variable returns to scale (V) and weak disposability of inputs (W).  
We can now define the Input Congestion Measure as 
 

).,|,(/),|,()|,( WVxyFSVxyFVxyCN iii =  (34) 
 
We say that an observation k is congestion free if ,1)|,( =VxyCN i  and that it is congesting if 
the measure is less than one.  Combining (32) and (34) we can now summarize the following 
decomposition of our original input measure of technical efficiency from (21), i.e., 
 

).,|,()|,()|,(),|,( WVxyFVxyCNSxySSCxyF iiii ⋅⋅=  (35) 
 
The first component measures deviations from constant returns to scale, the second captures 
deviations from strong disposability of inputs and the third is a measure of input technical 
efficiency measured relative to a variable returns to scale technology with weak disposability. 
 
The next section turns to ‘economic’ or price related measures of input efficiency. 
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Input-Saving Measures of Efficiency with Prices 
 
We call these price related measures ‘economic’, since economists are typically interested in 
prices, costs, etc.  For the input-saving economic measures of efficiency, we assume that input 
prices ),...,( 1 kNk

k www =  are known for each firm or DMU.  If we know both input prices and 

input quantities, we can also compute Total Cost ( kC ) for each DMU, Kk ,...,1=  
 

.
1

kk
knkn

N

n

k xwxwC == ∑
=

 (36) 

 
As an example, suppose that the four DMU’s from Table 1 and 4 all face the same input prices 

)2,1(=kw , 4,...,1=k , then we have the following information 
 

Firm 
(DMU) 

Input 1 

1x  
Input 2 

2x  
Output 

y  
Total 
Cost 

1 1 2 1 5 
2 2 1 1 4 
3 2 2 1 6 
4 3 1 1 5 

Table 5: Total Cost 
 
Of course, these costs may not be minimal cost for the individual DMU’s when we take into 
account the best practice frontier.  This is easy to see if we plot the data, see Figure 6, which also 
allows us to illustrate the famous Farrell decomposition of cost efficiency. 
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Figure 6: The Input-Output Farrell Decomposition 
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In Figure 6, the reference technology ),|1( SCL  is constructed from the data in Table 5.  If you 
focus on DMU 3 as an example, you see that it uses two units of each input to produce one unit 

of output.  Given our input prices 11 =kw  and 22 =kw , DMU 3 has the following total cost 
 

.222163 ⋅+⋅==C  
 
From the figure you see that DMU 3 is technically inefficient, and from (21) this technical 
inefficiency equals 
 

.75.0),|2,2,1( =SCFi  
 
This technical inefficiency can be given a cost interpretation since we know input prices.  If 
DMU were technically efficient, it would be producing at b and its cost would be 
 

,5.45.125.11 =⋅+⋅  
 
which we can compare to its actual total cost of $6 to get 
 

,75.06/5.4 =  
 
which corresponds to DMU 3’s measure of technical efficiency, i.e., DMU 3 could reduce costs 
by 25% if they eliminated technical inefficiency. 
 
That isn’t the end of the story, because in terms of cost, DMU 3 could do even better by 
operating with the same inputs as DMU 2.  This would require changing its input mix, but that 
makes sense given the relative prices.  We can compute this Minimum Cost for DMU 3 as the 
solution to 
 

21 21min),|2,1,1( xxSCC +=  (37) 
 s.t.     ,11111 4321 >+++ zzzz  

           ,3221 14321 xzzzz <+++  

           ,1212 24321 xzzzz <+++  

           ,0,0,0,0 4321 >>>> zzzz  

 
which for our DMU 3 is 
 

.4),|2,1,1( =SCC  
 
Although the programming problem in (37) looks a lot like those used to compute technical 
efficiency, there are some differences.  First the objective (the first line) is different; here we are 
explicitly seeking to minimize the cost of inputs.  Another difference is that the input constraints 
now have the input quantities of the DMU being evaluated as unknowns or variables rather than 
given quantities.  That is what allows for the change in input mix.  In the technical efficiency 
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measures, the input mix (which is defined as xx / ) was not allowed to change; inputs were 

changed by scaling all of them down by the same proportion ( λ ).  Figure 6 illustrates: technical 
efficiency scales along a ray, whereas identification of minimal cost can result in changes in 
input mix. 
 
The general statement of the Cost Minimization Problem is 
 

.),|(),...,(:min),|,( 1
1 








∈= ∑
=

SCyLxxxwSCwyC Nnn

N

n

 (38) 

 
Although we have defined minimum cost relative to ),|( SCyL  here, you could minimize cost 
relative to other technologies.  Our definition here allows us to have a decomposition that is 
analogous to our decomposition of ),|,( SCxyFi . 
 
We begin by defining Cost Efficiency as the ratio of minimum to total (observed) cost, i.e., 
 

,/),|,(),|,,( wxSCwyCSCwxyOi =  
 
which for DMU 3 is equivalent to ca 0/0  in Figure 6, or in terms of the costs 
 

.6/4)2221/()1221( =⋅+⋅⋅+⋅  
 
Notice that for DMU 3 we have identified cost efficiency as ca 0/0  and technical efficiency as 

ba 0/0 .  The residual between these two is generally referred to as Input Allocative Efficiency 
and can be computed as 
 

),,|,(/),|,,(),|,,( SCxyFSCwxyOSCwxyA iii =  (39) 
 
which for DMU 3 is cb 0/0 .  If we rearrange the expression for allocative efficiency we arrive at 
what is known as the Farrell Decomposition of Input Efficiency, 
 

),,|,(),|,,(),|,,( SCxyFSCwxyASCwxyO iii ⋅=  (40) 
 
In terms of Figure 6, for DMU 3 we have 
 

).0/0)(0/0(0/0 abbcac =  
 
If we combine the Farrell decomposition (40) with our decomposition of the technical efficiency 
measure (32), we have 
 

).,|,()|,()|,(),|,,(),|,,( WVxyFVxyCNSxySSCwxyASCwxyO iiiii ⋅⋅⋅=  (41) 
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This grand decomposition of our economic and technical input-saving measures of efficiency 
shows that input cost efficiency can be broken down into four different components: one 
economic and three technical.  The economic component is allocative efficiency, the technical 
components include scale efficiency, congestion and technical efficiency, where the last is 
measured relative to the ),|( WVyL  technology. 
 

Subvector Efficiency 
 
So far in our efficiency measures, inputs have been treated symmetrically.  For example, the 
technical efficiency measures scales each input with the same ( λ ) factor and the economic 
measure minimizes the cost of all inputs.  At instances it may be useful to scale only some of the 
inputs or minimize cost for a subset of them.  We refer to these cases as Subvector Efficiency 
Measures. 
 
To illustrate the subvector idea, consider expression (22), where both inputs are scaled by λ .  
Now if, for example, 2x  is not adjustable (for example this may be the physical plant which is 
fixed in the short run), then we may drop the λ  in front of that input and only scale on 1x .  
Clearly any of the technical efficiency measures can be generalized to scale on subvectors, which 
is done by multiplying only the relevant inputs by λ . 
 
Again, in the short run, some inputs may be fixed and cost may be computed for the variable 
factors, i.e., short run variable cost.  This generalization of the cost minimization problem (38) is 
obtained by minimizing cost for some inputs, while keeping the others fixed.  In our example 
(37), one may take 2x  equal to the observed input and minimize variable cost with respect to the 
first input. 
 
 

3.  Direct Output-Oriented Efficiency Measures 
 
Output-oriented measures of efficiency tell you how much more can be produced from a given 
amount of inputs or resources.  In contrast to the input-saving measures where the idea is to 
reduce inputs; inputs are taken as given here, and outputs are expanded.  Nonetheless, there are a 
lot of similarities: like the input measures, we can divide output measures of efficiency into 
technical and ‘economic’ types, where the latter require information on prices, this time output 
prices.  This section will in fact mirror our section on input measures of efficiency.  Again, we 
begin with the technical measures of efficiency. 
 
 We begin with a diagram and some numbers to illustrate output-oriented technical 
efficiency.  Since we allow for more than one output, the most helpful way to look at technology 
is with an output set.  In Figure 7 we reproduce the output set from Figure 3 and augment it with 
the data in Table 6 below.  With the additional data there are three observations or DMUs, each 
using one unit of input to produce two different outputs, 1y  and 2y .  DUM 1 and 2 are 
benchmark firms; they are on the boundary or best practice frontier of the technology, 
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),|1( SCP .  DMU 3, which has the same inputs as 1 and 2 but produces less of both outputs, is in 
the interior of the output set, and is obviously not as productive as 1 and 2. 
 

 
 
0 
 

  1                              2 
 

2 
 

1 
 

C 
 

C 
 

 
 

 
 

b 
 

a 
 

y2

C 
 

C 
 

1 
 

2 
 

3 
 

P C S( , )1

Figure 7: The Output Measure of Technical Efficiency 

y
 

Figure 7: The Output Measure of Technical Efficiency 
 
If we measure the deviation of DMU 3 from the best practice frontier in a radial way, its relative 
technical efficiency is given by 
 

,0/0 ab  
 
which can also be thought of as the ratio of (the size of) maximum potential output (at b) to (the 
size of) actual or observed output (at a).  This measure is sometimes referred to as the Farrell 
Output-Oriented Measure of Technical Efficiency.  More formally we define it as 
 

)}.,|(:max{),|,( SCxPySCyxFo ∈= θθ  (42) 
 
In order to distinguish between the output and input oriented measures, we use the subscript ‘o’ 
instead of ‘i’.  In fact, the two measures are, as you might guess, related.  Specifically, under 
constant returns to scale and strong disposability, they are reciprocals, i.e., 
 

.)),|,((),|,( 1−= SCxyFSCyxF io  (43) 
 

Firm 
(DMU) 

Input 
x  

Output 1 

1y  
Output 2 

2y  
1 1 2 1 
2 1 1 2 
3 1 1 1 

Table 6: Augmented Data for an Output Set 
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 We can compute the output-oriented measure of technical efficiency for DMU 3 using 
our data as follows 
 

θmax),|1,1,1( =SCFo  (44) 

          s.t.     ,1112 321 θ>++ zzz  

                    ,1121 321 θ>++ zzz  

                    ,1111 321 <++ zzz  

                    ,0,0,0 321 >>> zzz  

 
and the efficiency score is equal to 
 

,5.1),|1,1,1( =SCFo  
 
which can be interpreted as saying that firm 3 could increase its two outputs by 50% if it were 
operating on the best practice frontier. 
 
If we computed the efficiency score for DMU 1 then the result is 
 

,1),|1,2,1( =SCFo  
 
i.e., firm 1 is technically efficient – it is a benchmark firm.  Inefficient firms have output 
efficiency scores greater than one and efficient firms have scores equal to one.  In general then 
 

,1),|,( >SCyxFo  (45) 

 
and we say that a firm or DMU is technically output efficient if 
 

,1),|,( =SCyxFo  (46) 
 
and inefficient otherwise. 
 

Output Slack 
 
Since the output measure of technical efficiency is radial, it is possible that efficient as well as 
inefficient firms may have what is called Output Slack.  To see this, suppose we add one more 
firm to our data, see Table 7. 
 

Firm 
(DMU 

Input 
x  

Output 1 

1y  
Output 2 

2y  
4 1 0.5 2 

Table 7: Added Data 
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 As you can see in Figure 8, DMU 4 is situated on a ‘flat spot’ of the output set.  It uses 
the same inputs as DMU 2 and produces the same amount of output 2y , but less of 1y .  
However, if we compute the Farrell measure of output technical efficiency for DMU 4, we 
would find that its value is 1, i.e., it is technically efficient since we cannot radially expand 
outputs.  Nonetheless, compared to DMU 2, we can see that its production is in some sense 
smaller, in fact it is smaller by 0.5 units of output one.  In general we say that there is Slack in 
output my  for firm k ′  if 
 

),,|,(
1

SCyxFyyz kk
omkkmk

K

k

′′
′

=

⋅>∑  (47) 

 
is true for some solution value for kz , Kk ,...,1= .  In our example, there is slack in output 1y . 
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Figure 8: Output Slack 

 

Decomposing Output Technical Efficiency 
 
Next we show how to decompose the output measure of technical efficiency ),|,( SCyxFo  into 
a scale efficiency measure and a measure of congestion.  We begin with scale efficiency. 
 

Output Scale Efficiency 
 
We proceed by noting that you can impose various types of returns to scale on the reference 
technology by changing the restrictions on the intensity variables ),...,( 1 Kzz .  For example if 
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then the technology described by 
 

:),...,{(),|( 1 MyySNxP =  (48) 
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satisfies Nonincreasing Returns to Scale (N).  If, instead the sum of the intensity variables is 
restricted to exactly equal one, we can model Variables Returns to Scale (V), 
 

:),...,{(),|( 1 MyySVxP =  (49) 
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1

Mmyyz mkmk

K

k

=>∑
=
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1

Nnxxz nknk
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which allows for increasing, constant and decreasing returns to scale. 
 
 We can measure output-oriented technical efficiency relative to any of these 
technologies, for example, we can define 
 

)},,|(:max{),|,( SVxPySVyxFo ∈= θθ  (50) 
 
which measures technical efficiency relative to a variable returns to scale technology.  The ratio 
of this particular measure and ),|,( SCyxFo  is used to define Output Scale Efficiency 
 

),,|,(/),|,()|,( SVxyFSCyxFSxyS ooo =  (51) 
 
which is a measure of the deviation from constant returns to scale in the output direction.  This is 
easiest to see in a diagram, see Figure 9. 
 
In the figure, firm 1 produces one unit of output from one unit of input.  Firm 2 produces 1.5 
units of output from 2 units of input.  If production were subject to constant returns to scale, firm 
2 should be able to produce 2 units of output from 2 units of input, i.e., double the inputs and 
outputs of firm 1.  Note that both firm 1 and 2 are technically efficient relative to the variable 
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returns to scale technology (labeled VRS in Figure 9), but only firm 1 is efficient when the 
reference technology satisfies constant returns to scale (labeled CRS).  So firm 1 is what we call 
scale efficient.  Firm 2 is not scale efficient; if constant returns to scale prevailed, firm 2 should 
be able to scale up its output by .5 units, or a proportion of 4/3. 
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Figure 9: Output Scale Efficiency 
 
More generally, we say that a firm or DMU is scale efficient if 1)|,( =SyxSo  i.e., if 

),|,(),|,( SVyxFSCyxF oo = , otherwise it is scale inefficient, 1)|,( >SyxSo .  Deviations from 
scale efficiency are essentially deviations from constant returns and therefore can be due to 
operating at a point of increasing returns or a point of decreasing returns to scale.  To identify 
which is the case, we need to compute technical efficiency relative to a nonincreasing returns to 
scale technology, i.e., 
 

)}.,|(:max{),|,( SNxPySNyxFo ∈= θθ  (52) 
 
As it turns out (and is easily seen in Figure 9 if you notice that the boundary of the nonincreasing 
returns technology overlaps the VRS technology, but includes the ray from point 1 to the origin), 
we have the following relationship 
 

),,|,(),|,(),|,(1 SCyxFSNyxFSVyxF ooo <<<  (53) 

 
and we can identify deviations from scale efficiency according to the following rule 
 
 if ,1)|,( >SyxSo  then scale inefficiency is due to: (54) 

  increasing returns to scale if ),,|,(),|,( SCyxFSNyxF oo =  

  decreasing returns to scale if ).,|,(),|,( SCyxFSNyxF oo >  
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In Figure 9, it is easy to see that DMU is scale inefficient and that it is due to operating at a point 
of decreasing returns.  For firm 2 we have 
 

),,|5.1,2(3/4),|5.1,2(1),|5.1,2( SCFSNFSVF ooo =<==  (55) 
 
so firm 2 is scale inefficient with 
 

.3/4)|5.1,2( =SSo  
 
which is due to decreasing returns to scale since 
 

).,|5.1,2(),|5.1,2( SNFSCF oo >  
 
 We can use scale efficiency to decompose our original output-oriented measure of 
technical efficiency 
 

).,|,()|,(),|,( SVyxFSyxSSCyxF ooo ⋅=  (56) 
 
This decomposition shows that a scale efficiency measure can be extracted from ),|,( SCxyF ; 

next we show how to also identify a congestion component. 
 

Output Congestion 
 
We use output congestion to mean deviations from strong disposability of outputs.  This is often 
associated with the idea of joint production of ‘good’ outputs with undesirable byproducts.  
Typically these undesirable outputs are thought of as ‘waste’, however, getting rid of these 
‘bads’ is generally costly; either directly through fines or regulations, or indirectly, because their 
reduction implies joint reduction of good outputs. 
 
 In order to model this idea that disposal of jointly produced bads is not free (not strongly 
disposable),we instead use the idea of weak disposability of outputs.  The simplest case would be 
that in which all outputs are weakly disposable, then we would measure efficiency relative to a 
technology satisfying weak disposability of all outputs. 
 

)},,|(:max{),|,( WVxPyWVyxFo ∈= θθ  (57) 
 
where the reference technology can be specified as 
 

:),...,{(),|( 1 MyyWVxP =  
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σ  
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Note that when weak disposability (W) is imposed together with variable returns to scale (V), a 
scaling factor, σ , is introduced to ensure that weak disposability is imposed. 
 
 To explicitly account for deviations from strong disposability we can now define an 
Output Congestion Measure for Mm ,...,1=  
 

),,|,(/),|,()|,( WVyxFSVyxFVxyCN ooo =  (59) 
 
and we say that an observation k is congestion free if 1)|,( =VyxCNo , and that it is congested if 
the measure is greater than one.  Instead of restricting all outputs to be weakly disposable, one 
could also specify that only a subvector of outputs be restricted to be weakly disposable in 

),|,( WVyxFo ; presumable those that are undesirable or costly to remove. 
 
 Combining (51) and (59) we can now summarize the following decomposition of our 
original output measure of technical efficiency from (42), i.e., 
 

),,|,()|,()|,(),|,( WVyxFVyxCNSyxSSCyxF oooo ⋅⋅=  (60) 
 
The first component measures deviations from constant returns to scale and the second 
component measures deviations from strong disposability of outputs.  The last component is a 
technical efficiency measure computed relative to a reference technology satisfying variable 
returns to scale and weak disposability of outputs. 
 

Economic Output Efficiency Measures 
 
This section looks at economic or price-related measures of output efficiency.  In order to 
compute such measures, you must have information on output prices as well as output and input 
quantities.  That is, we assume here that output prices ),...,( )1 kmk

k ppp =  are known for each 

DMU, Kk ,...,1= .  Using the price and quantity data, we can compute Total Revenue as 
 

.
1

kk
kmkm

M

m

k ypypR == ∑
=

 (61) 

 
This observed revenue, as we shall see, may not necessarily be the same as maximum revenue. 
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A numerical example might be helpful.  Table 8 contains some hypothetical data for three 
DMUs.  Let’s assume that they all face the same output prices, )2,1(=kp , 3,2,1=k . 
 

Firm 
(DMU) 

Input 
x  

Output 1 

1y  
Output 2 

2y  
Total 

Revenue 

1 1 2 1 4 
2 1 1 2 5 
3 1 1 1 3 
Table 8: Data for a Best Practice Technology 

 
 One obvious economic measure of performance is a comparison of the observed total 
revenues with Maximum Revenues.  These are defined as 
 

,),|(),...,(:max),|,( 1
1 








∈= ∑
=

SCxPyyypSCpxR Mmm

M

m

 (62) 

 
where the idea is to solve for the output quantities that maximize revenues given output prices 
and the reference technology.  Here we have used the technology satisfying strong disposability 
and constant returns. 
 
Substituting our data into (62), we have for DMU 3, 
 

21 21max),|1,1,1( yySCR +=  (63) 
  s.t. ,112 1321 yzzz >++  

   ,121 2321 yzzz >++  

   ,1111 321 <++ zzz  

   .0,0,0 321 >>> zzz  

 
The solution to this problem is $5, whereas the observed total revenue for DMU 3 was only $3, 
i.e., DMU 3 is in some sense inefficient, which is also illustrated in Figure 10, where we have 
plotted our data along with the reference technology and observed and maximal revenue.  In 
general we define the Overall Measure of Output Efficiency as 
 

,/),|,(),|,,( pySCpxRSCpyxOo =  (64) 
 
i.e., the ratio of maximum to observed total revenue.  This ratio is also sometimes referred to as 
the Revenue Measure of Output Efficiency.  For firm or DMU 3, observed revenue was $3, so we 
have 
 

,3/50/0),|2,1,1,1,1( == acSCOo  (65) 
 
where the letters refer to the points in Figure 10. 
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Figure 10: The Output-Oriented Farrell Decomposition 

 
 This overall measure can be decomposed along the same lines as the Farrell 
decomposition on the input side into a technical and allocative part.  If you refer to Figure 10, 
you can see that DMU 3 is not only not earning maximum potential revenue, it is also operating 
inside the best practice frontier.  We can identify the output technical efficiency for firm 3 as 
 

5.10/0),|1,1,1( == abSCFo  (66) 
 
i.e., firm 3 could increase its two outputs by a factor of 1.5 if it were operating at benchmark 
level b instead of at observed level a.  This component, is of course, independent of prices, 
although it can be given a revenue interpretation.  Specifically, revenue could be increased by a 
factor of 1.5 if DMU 3 were technically efficient. 
 
 Given overall efficiency and technical efficiency, we can now define Output Allocative 
Efficiency as the residual, namely 
 

)).,|,(/),|,,(),|,,( SCyxFSCpyxOSCpyxA ooo =  (67) 
 
Rearranging this expression gives the Farrell Decomposition of Output Efficiency 
 

),,|,(),|,,(),|,,( SCyxFSCpyxASCpyxO ooo ⋅=  (68) 
 
which is illustrated for DMU 3 in Figure 10,  with the associated values 
 

.0/00/00/0 abbcac ⋅=  
 
Or in numbers, for DMU 3 we have 
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).2/3())2/3/()3/5((3/5 ⋅=  
 
 If we combine the Farrell decomposition with out decomposition of technical efficiency 
in (60) we have the following grand decomposition of revenue efficiency 
 

).,|,()|,()|,(),|,,(),|,,( WVyxFVyxCSyxSSCpyxASCpyxO ooooo ⋅⋅⋅=  (69) 
 

Subvector Efficiency 
 
The above output-based technical efficiency measures scale each output with the same factor θ .  
Sometimes it may be useful not to treat output symmetrically and scale only some of them.  In 
this case we have what we call Subvector Efficiency Measures.  As an example, see expression 
(44), both outputs are scaled, but if we wish to measure subvector efficiency we just drop the θ  
for the output we do not wish to scale.  This simple example generalizes to each of the technical 
measures: just drop the scaling factor for those outputs you wish to exclude from the scaling. 
 
For revenue maximization, one may maximize over a subvector of outputs.  This requires 
specifying which outputs are to be included in the objective function, and including the observed 
outputs of those omitted in the objective function on the right hand side of the appropriate output 
constraint. 
 

4.  Measuring Productivity 
 
In this section we measure how performance changes over time.  The basic notion we use here is 
what is typically called productivity or productivity growth.  As it turns out, the technical 
efficiency measures discussed in the two previous sections lend themselves very readily to 
productivity measurement.  In fact they are the natural building blocks for measuring total factor 
productivity. 
 
 To get the basic idea of what we mean by productivity, let’s start with simplest possible 
case: a world in which there is a single output produced by a single input and we have two 
periods, t  and 1+t .  So we observe ),( tt yx  in the base period and ),( 11 ++ tt yx  in the following 
period.  Total factor productivity is an index of how much output is produced from input(s), so to 
measure that idea over time we have 
 

tt

tt

xy

xy
TFP

/
/ 11 ++

=  (70) 

 
which is just the ratio of average products in each period in this simple case.  The trick is to 
construct this type of index when you have more than one input and output, which of course, is 
the usual case. 
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In order to generalize to the many input, many output case we follow the index number literature 
and make use of distance functions to aggregate inputs and outputs.  For us the nice thing about 
distance functions is that they are the reciprocals of the technical efficiency measures discussed 
earlier in this chapter.  We can define the Input Distance Function for a ),|( SCyL  technology 
as 
 

)).,|,(/(1),|,( SCxyFSCxyD ii =  (71) 
 
Similarly, we can define the Output Distance Function for technology ),|( SCxP  as 
 

)).,|,(/(1),|,( SCyxFSCyxD oo =  (72) 
 
One of the reasons distance functions have been used in constructing total factor productivity 
indexes is that they have some nice mathematical properties.  These are summarized below. 
 

• By definition, the input and output distance functions are homogeneous of degree plus 
one in x  and y , respectively, 

 
.0),,|,(),|,( >= λλλ SCxyDSCxyD ii  (73) 

.0),,|,(),|,( >= θθθ SCyxDSCyxD oo  
 

• In the case where they satisfy constant returns to scale, the input and output distance 
functions are homogeneous of degree minus one in y  and x , respectively, 

 
.0),,|,()/1(),|,( >= λλλ SCxyDSCxyD ii  (74) 

.0),,|,()/1(),|,( >= θθθ SCyxDSCyxD oo  
 

• When they satisfy constant returns to scale, the input and output distance functions are 
reciprocals, 

 
).,|,(/(1),|,( SCyxDSCxyD oi =  (75) 

 
 If we go back to the single input, single output case, we can write the output distance 
function as follows 
 

),,|1,1(),|,( SCD
x

y
SCyxD oo =  (76) 

 
where we use the properties in (73) and (74).  If we use this idea and define something like (76) 
for t  and 1+t , and substitute into our definition of total factor productivity we get 
 

),,|,(/),|,(
/
/ 11

11

SCyxDSCyxD
xy

xy
TFP ttt

o
ttt

ott

tt
++

++

==  (77) 
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where )(⋅t
oD  is the distance function defined relative to the reference technology from period t . 

 
 This type of total factor productivity index can be defined for the general many input and 
many output case as well, and is called the Period t Output-Oriented Malmquist Productivity 
Index: 
 

).,|,(/),|,( 11 SCyxDSCyxDM ttt
o

ttt
o

t
o

++=  (78) 
 
 This index compares data from two different periods, t  and 1+t , to the same reference 
technology from period t  (note the superscripts on the D  as well as yx,  in the definition).  
Figure 11 shows what is going on for a simple example.  The observed data from period t  is 

)1,1(),( =tt yx  and for period 1+t  it is )2,5.1(),( 11 =++ tt yx .  The two distance functions can be 
computed as 
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Figure 11: t -Period Malmquist Productivity Index 
 

θmax)),|1,1( 1 =−SCD t
o  (79) 

  s.t. ,11 θ>z  

   ,11<z  

   ,0>z  

 
and 
 

θmax)),|2,5.1(( 1 =−SCD t
o  (80) 

  s.t. ,21 θ>z  
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   ,5.11<z  

   ,0>z  

 
with solution values of 1),|1,1( =SCD t

o  and )5.1/(2),|2,5.1( =SCD t
o .  Thus the productivity 

index is 
 

.3/4
5.1

2
==t

oM  (81) 

 
Before going on, we note the following about our example: 
 

• The reference technology is constructed from the data from period t  only.  Here, the data 
from period 1+t  lies above the best practice frontier from period t . 

 
• For the computations, we actually compute technical efficiency measures and use the fact 

that they are reciprocal to the distance functions.  This allows us to compute a simple 
linear programming problem. 

 
• The value of t

oM  is greater than one.  In this case that means that there has been an 
improvement in productivity between period t  and 1+t . 

 
 In the example above we define productivity relative to the period t  best practice 
frontier.  We can define an analogous productivity measure where the best practice frontier from 
period 1+t  is used as the benchmark, namely, the Period 1+t  Malmquist Productivity Index is 
defined as 
 

).,|,(/),|,( 11111 SCyxDSCyxDM ttt
o

ttt
o

t
o

+++++ =  (82) 
 
 We can make use of the t  and 1+t  versions of the Malmquist index to form an ‘ideal’ 
type index.  This type of index is due to Fisher (1922).  The Fisher ideal index is the geometric 
mean of a Paasche index and a Laspeyres index, which are the upper and lower bounds of the 
‘true’ index.  Taking the geometric means of these bounds thus gives a closer approximation to 
the true index.  We use that same idea and take the geometric mean of the t  and 1+t  Malmquist 
indexes to define the Output-Oriented Malmquist Productivity Index ( oM ) as 
 

.
),|,(

),|,(

),|,(

,|,(
),,,(

2/1

1

11111
11






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SCyxD

SCyxD

SCyxD

SCyxD
yxyxM

ttt
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ttt
o

ttt
o

ttt
otttt

o  (83) 

 
 This form of the Malmquist index is illustrated in Figure 12.  There are two different best 
practice frontiers in the figure, one formed from period t  data and the other from period 1+t  
data.  Included in the figure is data from each period for one DMU, denoted by ),( tt yx  and 
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),( 11 ++ tt yx .  The observed input and output from 1+t  lie ‘above’ the period t  best-practice 
technology. 
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Figure 12: The Output-Oriented Malmquist Productivity Index 

 
 If we substitute the letters on the y-axis (recall that this is an output-based measure), the 
Malmquist index for our DMU in Figure 12 equals 
 

.
/
/

0/0
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),,,(
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11
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
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
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yxyxM tttt
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We can rewrite this expression as 
 

,
0/0
0/0

0/0
0/0

),,,(
2/1

11 















=++

eb
da

ef
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yxyxM tttt
o  (85) 

 
where the expression in the first parentheses measures the change in efficiency between period t  
and 1+t : )0/0( ac  is the technical efficiency of ),( 11 ++ tt yx  relative to the period 1+t  best 

practice frontier and )0/0( ef  is the technical efficiency of ),( tt yx  relative to the t  period best 
practice frontier.  We call this term the Efficiency Change component of productivity change.  In 
general it is defined as 
 

EFFCH = ).,|,(/),|,( 111 SCyxDSCyxD ttt
o

ttt
o

+++  (86) 
 
The square root of the second term in parentheses in (85) captures the shift in the best practice 
frontier between t  and 1+t : )0/0( da  measures the vertical shift at 1+tx  and )0/0( eb  captures 
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the vertical shift evaluated at tx .  The (geometric) mean of these two shifts is our measure of 
technical change.  In general we define Technical Change as 
 

TECH = .
),|,(

),|,(

),|,(

),|,(
2/1

1111

11









++++

++

SCyxD

SCyxD

SCyxD

SCyxD
ttt

o

ttt
o

ttt
o

ttt
o  (87) 

 
The produce of EFFCH and TECH is equal to ),,,( 11 tttt

o yxyxM ++ .  Improvements in 

productivity over time is signaled when the value of ),,,( 11 tttt
o yxyxM ++  is greater than one, 

whereas declines in productivity are signaled when its value is less than one.  The same 
interpretation applies to the components of productivity change, EFFCH and TECH.  Note that 
improvement in productivity could be accompanied by deterioration in one of the component 
measures, and vice versa. 
 
 In the single input, single output case, the Malmquist productivity index simplifies to the 
total factor productivity measure in (77).  In this case, the distance functions simplify to 
 

),|1,1(),|,( 1
1

1
111 SCD

x

y
SCyxD t

ot

t
ttt

o
+

+

+
+++ =  (88) 

 
and 
 

).,|1,1(),|,( SCD
x

y
SCyxD t

ot

t
ttt

o =  (89) 

 
If we insert these into (83), we get our simple total factor productivity ratios. 
 
 There are some potential problems in computing these productivity indexes.  Even 
though we know that the distance functions are the reciprocals of technical efficiency measures, 
we have some special cases where data from one period is compared to a frontier from a 
different period, for example ),|,( 11 SCyxD ttt

o
++  and ),|,( SCyxD ttt

o .  It is possible that these 
mixed period distance functions may have a solution value of zero, in which case the 
productivity index will be ill-defined.  One way to avoid this problem is to require that all 
observations are strictly positive, i.e., 0>knx  and 0>kmy , Kk ,...,1= , Nn ,...,1=  and 

Mm ,...,1= . 
 
 Let’s look at the programming problem we have to solve for one of these mixed period 
problems.  We assume that there are Kk ,...,1=  observations of inputs and outputs at each 

period t  and 1+t , denoted as ),...,( 1
, t

kN
t
k

tk xxx = , ),...,( 11
1

1, +++ = t
kN

t
k

tk xxx , ),...,( 1
, t

kM
t
k

tk yyy = , and 

),...,( 11
1

1, +++ = t
kM

t
k

tk yyy .  For each observation Kk ,...,1=′  we compute 
 

θmax)),|,(( 11,1, =−+′+′ SCyxD tktkt
o  (90) 
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The reference technology is formed from the data from period t , which are the summed terms in 
the problem above.  The observation or DMU k ′  which is under evaluation is, however, data 
from period 1+t , as you can see from the superscripts on the right hand side of the inequalities. 
 
 The other mixed period distance function is computed for DMU k ′ as 
 

θmax)),|,(( 1,,1 =−′′+ SCyxD tktkt
o  (91) 
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Here the reference technology is constructed from the period 1+t  data, while DMU k ′  is being 
evaluated based on its period t  data. 
 
 Next we look at a numerical example based on the data in Table 9. 

 
Firm 

(DMU) 
Input 1 

tx  
Output 

ty  
Input 

1+tx  
Output 

1+ty  
1 1 1.5 2 3 
2 1 1 2 3 

Table 9: Two Period Data Set 
 
 This data is illustrated in Figure 13. 
 
 We will write out the programming problems for the two observations for the mixed 
period problem ),|,(1 SCyxD ttt

o
+ .  For firm 1, we have 

 
θmax)),|5.1,1( 11 =−+ SCD t

o  (92) 

  s.t. ,5.133 21 θ>+ zz  

   ,122 21 <+ zz  

   ,0,0 21 >> zz  

 
which has a solution value of 1.  For firm 2 
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θmax)),|1,1(( 11 =−+ SCD t

o  (93) 

  s.t. 133 21 θ>+ zz  

   ,122 21 <+ zz  

   ,0,0 21 >> zz  

 
which has a solution value of 1.5. 
 
 The productivity scores for the two firms are given in Table 10.  Firm 2 was technically 
inefficient in period t , but efficient in period 1+t , which is reflected in the improvement in 
EFFCH, which is in that case the source of productivity improvements for firm 2.  Firm 2 was a 
benchmark firm in both periods, and, although output increased in period 1+t , average product 
remained the same, i.e., there was no technical change, TECH = 1. 
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Figure 13: Malmquist Productivity With Sample Data 

 
Firm ),,,( 11 tttt

o yxyxM ++  EFFCH TECH 

1 1.0 1.0 1.0 
2 1.5 1.5 1.0 

Table 10: Productivity Scores 
 

Input-Saving Malmquist Productivity Indexes 
 
Under constant returns to scale, the input and output distance functions are reciprocals.  This 
means that if you would like to measure productivity as input-saving rather than output-
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enhancing, all you need to do is invert the output-oriented measure discussed above.  That is if 
we define the Input-Saving Malmquist Productivity Measure as 
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then we get 
 

)).,,,(/(1),,,( 1111 tttt
i

tttt
o yxyxMyxyxM ++++ =  (95) 

 
In terms of an illustration, if you look at Figure 12, instead of measuring distances North-South, 
i.e., in an output direction, the input-saving Malmquist index would measure everything East-
West, i.e., in an input-saving direction.  Again, under constant returns to scale, these are merely 
reciprocals. 
 

5.  Capacity Utilization 
 
Our measure of capacity and capacity utilization has its roots in Johansen (1968, p. 50), who 
defines plant capacity as ‘… the maximum amount that can be produced per unit of time with the 
existing plant and equipment provided that the availability of the variable factors is not 
restricted.’  To make this concrete, let the input vector be partitioned into two subvectors 

),( vf xxx = , where fx  is the subvector of fixed factors and vx  is the subvector of variable 

factors.  Define the production function for the single output case )1( =M  as 
 

)},(:max{)(),( xPyyxfxxf vf ∈==  

 
and define capacity as 
 

}0:),(max{)(ˆ ≥= vvff xxxfxf  

 
which gives the maximum feasible output given fx , when vx  is unrestricted. 

 
 Then the Johansen capacity utilization ratio is given by 
 

( ) ),(ˆ/)()(ˆ/),(, ffvf xfxfxfxxfxyCU ==  (96) 

 
which will be less than or equal to one. 
 
 Due to the simple relationship between the output distance function and the production 
function, namely 
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),(/),( xfyyxDo =  
 
capacity utilization (96) can be written in terms of output distance functions as 

( ) ),,(/),(ˆ, yxDyxDxyCU ofo=  (97) 

 
where 
 

}.0),,(:min{),(ˆ >∈= vvffo xxxP
y

yxD
θ

θ  

 
 We take (97) as the multi-output measure of the Johansen capacity utilization measure, 
since the distance functions allow us to easily include a vector of outputs. 
 
 The computation of ),( yxDo  is straightforward – it is the reciprocal of the Farrell output 

oriented technical efficiency measure, ),( yxFo , see for example (44) or (90). 
 

 The computation of ),(ˆ yxD fo  is also fairly straightforward, namely for observation k ′ , 
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Note that in this problem, the fixed factors are restricted, but the variable inputs vx  are not (there 

is no constraint for vx ). 
 
 The solution to (98) may be used to compute capacity output y* for k ′  as 

),|,(ˆ/* SCyxDyy kk
fo

k ′′′= , where ky ′  may be a vector. One may also compute optimal variable 

input usage by multiplying the solution values of the intensity (z) variables by the vector of 
observed variable inputs from the sample, i.e., 
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k
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Screen Notation 
 

),( xyFi  ),( yxFo  Returns to Scale Disposability 

),( xyS i  ),( yxSo  CRS=C Strong = S 

),( xyCN i  ),( yxCNo  NIRS=N Weak = W 

),( xyM i  ),( yxM o  VRS=V  

    
),,( wxyAi  ),,( pyxAo  Capacity: Input 

Designation 
 

),,( wxyOi  ),,( pyxOo  fixed= f  

),( wyC  ),( pxR  variable= v  
    

),( xyCU     
Dhat(xf,y)    
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